
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008

The Greeks

Introduction

We have studied how to price an option using the Black-Scholes formula.

Now we wish to consider how the option price changes, either over time or as

the parameters in the formula are changed. As the price of an option changes

the risk of the option changes too. Therefore knowing how the option prices

changes enables the trader to hedge the risks of holding the option.

These notes will consider the various measures of how the option price

changes. These measures are known as the Greeks as each of them is given

a Greek letter.1 We shall consider what these Greek letters measure and

how they relate to each other. We shall also consider implied volatility and

volatility smiles. We shall make use of the put-call parity condition for

European options.

Keywords: Delta, Gamma, Rho, Vega, Theta, Hedging, Volatility smiles.

Reading: Hull Chapters 15 and 16.

The Greeks

We have from the Black-Scholes formula that the price of a call option de-

pends on on the price of the underlying asset, S, the strike price K, the

time to maturity, T , the interest rate, r and the volatility, σ.2 Write this as

1Well one of them is not a Greek letter at all.
2The strike price K is a parameter but cannot change over the life of an option and

therefore won’t be of primarily interest. S and T do change through the life of an option
and although the Black-Scholes formula assumes r and σ are constant, they could in fact
change through the life of an an option.
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a function C = C(S,K, T, r, σ). Then using a first-order approximation we

have

C(S + δS,K, T + δT, r + δr, σ + δσ) = C(S,K, T, r, σ)

+ δS
∂C

∂S
+ δT

∂C

∂T
+ δr

∂C

∂r
+ δσ

∂C

∂σ
.

This show the effect of varying each of the parameters, S, T , r, σ by small

amounts δS, δT , δr and δσ but with K fixed. The same will be true for any

option or portfolio of options. Thus if Π = C(S, T, r, σ) is the value of the

option or portfolio of options then the value of the portfolio after a small

change in the parameters is given by3

Π(S + δS,K, T + δT, r + δr, σ + δσ) = Π(S,K, T, r, σ)

+ δS
∂Π

∂S
+ δT

∂Π

∂T
+ δr

∂Π

∂r
+ δσ

∂Π

∂σ
.

Each of the partial effects is given a Greek letter.

Delta ∆ = ∂Π/∂S. ∆ measures how the option price changes when the

price of the underlying asset changes.

Theta Θ = −∂Π/∂T . Θ measures how the option price changes as the time

to maturity decreases.

Rho ρ = ∂Π/∂r. ρ measures how the option price changes as the interest

rate changes.

Vega υ = ∂Π/∂σ. υ measures how the option price changes as the volatility

changes.

There is also another Greek that measures how ∆ changes as S changes.

This is known as Gamma.

3Here K is a vector since there might be many different strike prices to be considered
in the portfolio.
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Gamma Γ = ∂∆/∂S = ∂2Π/∂S2. Γ measures the rate of change of the

option’s ∆ as the price of the underlying changes.

We shall discuss each of these a little further.

Delta

We have shown in the binomial model that holding a position that is ∆ units

long in the stock and short one call option we have a portfolio that is risk

free. The price of this portfolio is Π(S,K, T, r, σ) = ∆S − C(S,K, T, r, σ).

The Delta of the portfolio is therefore

∆Π =
∂Π

∂S
= ∆− ∂C

∂S
= ∆−∆C

where ∆C is the Delta of the call option. If the portfolio is risk-free it will

not depend on S and hence ∆Π = 0. Such a portfolio is said to be delta

neutral . It therefore follows that ∆C = ∆. That is the ∆ we calculate in

replicating the option or creating a risk neutral portfolio is the Delta of the

option itself.

This gives a convenient method for finding ∆ from the Black-Scholes

formula. Let’s take the Black-Scholes formula

C(S,K, T, r, σ) = SN(d1)− e−rTKN(d2)

where

d1 =
ln( S

K
) + (r + 1

2
σ2)T

σ
√
T

d2 = d1 − σ
√
T =

ln( S
K

) + (r − 1
2
σ2)T

σ
√
T

We wish to find ∂C/∂S where we have to remember that both d1 and d2

depend on S. To find ∆ we first note that the call price has the property
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that if we double the strike K and double the price of the underlying S,

the call price doubles. This is exactly what we should expect. If we change

the currency denomination of the asset from pounds to dollars and there are

two dollars per pound then the strike price and the price of the underlying

should double and the call price should also be double. A function with this

property is said to be linearly homogeneous in S and K. More generally this

means that

λC(S,K, T, r, σ) = C(λS, λK, T, r, σ)

for any λ > 0. It therefore follows from Euler’s Theorem that4

C(S,K, T, r, σ) = S
∂C

∂S
+K

∂C

∂K
.

Since the Black-Scholes formula has the form C(S,K, T, r, σ) = Sx − Ky

where x = N(d1) and y = e−rTN(d2). This therefore implies that ∂C/∂S =

N(d1) and (∂C/∂K = −e−rTN(d2)) and therefore that ∆ = N(d1).

Question: Give an interpretation for ∂C/∂K [Hint: Consider the effect of a

one unit increase in the strike price on the profitability of holding the option.]

Notice that since ∆ = N(d1), 0 ≤ ∆ ≤ 1 as N(d1) is a cumulative

probability. This is again what we should expect. The ∆ tell us how much of

the underlying asset to buy to replicate the option. Only if we know for sure

that the option will be exercised will we replicate it by buying the underlying

asset. If there is some possibility that the option will not be exercised then we

only need to buy a fraction of the underlying asset (whilst partly borrowing

in order to pay for the asset).

Question: What is the ∆ of a forward contract? [Hint: The forward contract

has a value of S −Ke−rT .]

It is important to remember that ∆ changes (with S and T ) and therefore

a portfolio that replicates the call will change over time and as the time to

4This is obtained by differentiating the above equation with respect to λ and setting
λ = 1 in the resulting equation.



FIN-40008 FINANCIAL INSTRUMENTS 5

maturity gets closer. The appropriate replicating portfolio or hedge thus

changes over time. This is known as rebalancing and the the the strategy of

keeping a delta-neutral portfolio is known as dynamic delta-hedging .

The ∆ of a put option can easily be calculated from the put-call parity

conditions for European options:

C = P + (S −Ke−rT ).

Differentiating the above equation with respect to S

∆C = ∆P + 1

where ∆C = ∂C/∂S and ∆P = ∂P/∂S. Thus

∆P = ∆C − 1 = N(d1)− 1.

The ∆ of the put option is negative (−1 ≤ ∆P ≤ 0) indicating that to

replicate the put option we mush short sell the underlying asset or to hedge

a long position in the option we buy the underlying asset.

Question: How would you hedge a long position in the forward contract?

What is the ∆ of a forward contract?

Theta

Theta measures how the option price changes as the time to maturity ap-

proaches.5 With some differentiation and manipulation it can be shown that

ΘC = −∂C
∂T

= −SN
′(d1)σ

2
√
T

− rKe−rTN(d2).

This shows that ΘC < 0. That is the price of the option declines as maturity

approaches or that longer dated options are more valuable. We know that

5Notice that by convention Θ is measured with a negative sign. That is it is how the
the option price changes as we approach maturity and T decreases.
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this is true for American options because the longer dated options give all the

opportunities for profit as the earlier dated options and more besides. The

same applies for European options (on non-dividend paying stocks) because

the early exercise of an American call option is never optimal and therefore

European and American call options are equivalent. To see that early exercise

is not optimal consider again the put-call parity condition C = P + (S −
Ke−rT ). Since the put option is a limited liability asset its price must be

non-negative. Hence P ≥ 0 and therefore C ≥ S − Ke−rT . Thus a lower

bound for the call price is C ≥ max{0, S − Ke−rT}. Now if r > 0 this

means C > S−K. Since the American option cannot be worth less than the

equivalent European option we therefore also have CA > S −K6 and hence

it will always be better to sell the option rather than exercise it early. Thus

American and European options on non-dividend paying stock are equivalent.

The situation is slightly different for European put options. From differ-

entiating the put-call parity condition with respect to T we get

−ΘC = −ΘP + rKe−rT .

Hence

ΘP = −∂C
∂T

= −SN
′(d1)σ

2
√
T

− rKe−rTN(d2) + rKerT

which may be of either sign. The same argument applies as for a call option.

The longer dated option will in general be more valuable. However for an

American put option early exercise may be optimal. This is because by

exercising early the investor gets the strike price earlier. In the extreme case

where the option is deep-in-the money and the stock price is close to zero

then there is little chance of falling lower. As there may be some chance of it

increasing, it may be optimal to exercise early and get the maximum gain at

an earlier point in time.7 Thus an American put option will be worth more

6Where CA is the price of the equivalent American call option.
7This is more likely if the option is deep in the money and N(d2) = 0.
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than a European option. Thus although Θ for an American put option will

be negative the Θ of a European put option may in some cases be positive.8

It should be remembered that Θ should not really be considered a hedge

parameter in the way ∆ is a hedge parameter for S. There is no uncertainty

about the approach of the expiration date and hence no risk against which

to hedge. Nevertheless Θ is related to another hedge parameter Gamma and

therefore it is information that is normally tracked by traders.

Gamma

Gamma measures how much ∆ changes as the price of the underlying asset

S changes and thus provides information about the appropriate dynamic

hedging strategy and how ∆ should be changed as S changes. If Γ is large

then it will be necessary to change ∆ by a large amount as S changes. In

this case it will be risky to leave ∆ unchanging even over shorter periods.

On the other hand if Γ is small then the costs of leaving ∆ unchanged will

be relatively small. Often traders wish to create a portfolio which is gamma-

neutral as well as delta-neutral. The reason for this is that it may not be

feasible or desirable to change ∆ continuously to keep a completely delta-

neutral portfolio and hence a gamma-neutral portfolio will mean that the

costs of not keeping the portfolio completely delta-neutral will be minimised.

It is important to realise however, that a gamma-neutral portfolio cannot be

achieved by using only the underlying asset (or a forward contract) since the

Gamma of the underlying asset is zero. Thus suppose that the delta-neutral

portfolio has a Gamma of Γx and that there is another traded option that

has a gamma of Γy. Then selling Γx/Γy of the traded options will create a

new portfolio that is gamma-neutral.

8In practice these cases seem quite rare.
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Given that for a call option ∆ = N(d1) and Γ = ∂∆/∂S it is easy to

calculate that the Gamma for a call option is

ΓC =
N ′(d1)

Sσ
√
T

where d1 is as given above and N ′(d) = (ed2/2)/
√

2π. Since N ′(d) > 0 we

have that ΓC > 0 which shows that the call price is a convex function of the

price of the underlying asset. Since ∆P = ∆C − 1 from the put-call parity

condition, we have by differentiating that

ΓP = ΓC

so that the Gamma of a put and an equivalent call are the same.

We can see the relationship between ∆, Θ and Γ from the Black-Scholes-

Merton Partial Differential Equation. This states that the price C of any

option or portfolio of options satisfy

C =
1

r

{(
∂C

∂T
+ rS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S

)}
which can be re-written as

C =
1

r

{(
(−Θ + rS∆ +

1

2
σ2Γ

)}
.

This equation can be used for calculating one of Θ, Γ and ∆ if the other

two are known. Also it follows directly from this equation that any portfolio

which is delta-neutral and gamma-neutral is also theta-neutral .

Vega

Vega measures how the option price changes as volatility changes. The Vega

of a call option is given by

υC = S
√
TN ′(d1).
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Also from the put-call parity condition we have that υC = υP . It is important

to understand why Vega is studied. In the Black-Scholes model volatility is

assumed to be constant. Thus it makes much less sense to consider how

the Black-Scholes formula changes in response to a change in volatility than

to a change in the underlying price. However, the relevant volatility for

calculating the option price is the volatility of the underlying asset over the

lifetime of the option. This is a future volatility, which is not observable. It

can be seen that the Vega of a call or put option is positive9 and so10 it is

possible to use the known market price of the option to impute the volatility.

This is known as the implied volatility . It is therefore possible to use market

prices to calculate implied volatility. More on this later.

Rho

Rho measures the sensitivity of the option price with respect to the interest

rate. As with the volatility an assumption of the Black-Scholes model is that

interest rates are constant over the life of the option. For a call option it can

be shown that

ρC = KTe−rTN(d2)

which is non-negative. This is because a rise in the interest rate reduces

the present value of the strike price to be paid out if the option is exercised

and this will raise the option price. From the put-call parity condition C =

P + (S −Ke−rT ) we get

ρC = ρP +KTe−rT

so that

ρP = KTe−rT (N(d2)− 1) = −KTe−rTN(−d2)

9Here we are considering plain vanilla options. If we consider digital puts and call then
the Vega of the put and the call must add to zero from the put-call parity condition for
digital options and hence the Vega of either the put or the call will be negative.

10because the relationship between price and volatility is monotonic, it can be inverted.
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which is non-positive. This is because as the interest rate rises the present

value of the strike price received at expiration, if the option is exercised,

declines reducing the price of the put.

Volatility

Implied volatility and volatility smiles

As we have discussed the volatility that is required to calculate the Black-

Scholes formula is a future volatility which is in principle unknown. It may be

calculated on the basis of historic volatility but this may not be an accurate

reflection of future volatility. It is therefore common to take the market

prices for options and calculate the volatility which if used in the Black-

Scholes formula would give the market price. This can be done as Vega is

positive so that no two different volatilities can imply the same price.

If the Black-Scholes formula were correct then all similarly dated options

on the same underlying should have the same implied volatility. If however,

the implied volatility is calculated and plotted against the strike price then

there is typically a u-shaped pattern with the bottom of the U near the at-

the-money strike price. Such a pattern is known as a volatility smile. Given

that Vega is positive one might imagine that this implies some arbitrage

opportunity. Either the low volatility options are underpriced or the higher

volatility options are overpriced and one can buy the low volatility options

and sell the high volatility options to yield a profit. However, these smiles

appear to persist so the arbitrage opportunity is probably more apparent

than real.

The smile is more an expression of the market’s view of the imperfections

of the Black-Scholes model itself. The two main imperfections are first the

assumption that the underlying prices follow geometric Brownian motion and
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so are lognormally distributed and second that the dynamic hedging which

requires continuous adjustment can be carried out without cost.

Fat tails, jumps and stochastic volatility

The assumption of geometric Brownian motion matches the data well but not

perfectly. When one compares actual data to that expected one finds that

actual data exhibits kurtosis . This means that the tails are fatter or thicker

than expected and the distribution is more highly peaked at the centre.

One way of modelling fat tails is to assume that volatility is itself stochas-

tic and itself follows something like a geometric Brownian motion process.

Another approach is to assume tat volatility is a function of changes in the

stock price so that big changes increase volatility.

Another approach is to consider processes that allow for jumps at some

discrete points. The jumps themselves follow a Poisson process and this is

added to the continuous Brownian motion process for the stock return. These

mixed models are know as jump-diffusion processes .

These alternatives for the Black-Scholes model are not universally better.

Which model fits better will depend on the market being studied. Thus jumps

in stock prices are quite common but are less common in foreign exchange

markets. This leaves much open for analysis and future work and most

trading banks will have teams of analysts working on exactly this. They will

typically be using discrete and numerical methods as well as mathematical

models. This of course also makes a topic for dissertation work.
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Conclusion

We have discussed what is meant by the Delta, Theta, Gamma, Rho and Vega

of an option. We have considered the relationship between Θ, ∆ and Γ for an

option or portfolio of option. We have also discussed how to impute volatility

from knowledge of market prices and the empirical phenomenon of volatility

smiles and how these might be accounted for by stochastic modelling of

volatility.


