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This paper considers a long-term relationship between two agents who both undertake an action or
investment that produces a joint benefit. Agents have an opportunity to expropriate some of the joint
benefit for their own use. Agents have quasi-linear preferences. Two cases are considered: where agents
are risk averse but where limited liability constraints do not bind, and where agents are risk neutral and
subject to limited liability constraints. We ask how to structure the investments and division of the surplus
over time to avoid expropriation. In the risk-averse case, the dynamics of actions and surplus may or
may not be monotonic depending on whether or not a first-best allocation can be sustained. Agents may
underinvest but never overinvest. If the first-best allocation is not sustainable, there is a trade-off between
risk sharing and surplus maximization; surplus may not be at its constrained maximum even in the long
run and the “amnesia” property of pure risk-sharing models fails to hold. In contrast, in the risk-neutral
case there may be an initial phase in which one agent overinvests and the other underinvests. Both actions
and surplus converge monotonically to a stationary state, where surplus is maximized subject to the
self-enforcing constraints.
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1. INTRODUCTION

This paper considers a situation where two agents repeatedly engage in joint production. In each

period, both agents simultaneously undertake an action or investment that produces a joint output.

Agents must also decide how to share the joint output each period. We assume there is a hold-up

problem, that is, contracts on actions or the division of the joint output are not enforceable and in

addition the outside option of each agent is increasing in the investment of the other agent. We allow

joint output and the outside options of the agents to depend on an exogenous state. We consider cases

where the agents are risk averse and where they are risk neutral. The only link between periods is

a Markov process determining states. There is complete information: apart from the fact that the

agents choose their actions simultaneously each period, everything is observable. The only friction

is that contracts cannot be enforced. We consider allocations or contracts from which no agent has
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an incentive to renege by imposing self-enforcing constraints at each date and state. We refer to

feasible contracts that satisfy these constraints as dynamic relational contracts. We characterize the

Pareto-efficient dynamic relational contracts; we refer to such contracts as optimal contracts.

We impose two simplifying assumptions on our model. First, we assume that agents’ preferences

are quasi-linear in consumption and actions. This simplifies the problem because with quasi-linear

preferences efficient actions (and hence, surplus) are determined independently of the distribution of

resources (the marginal rate of substitution between consumption and the action is equal to unity).

Second, we impose sufficient conditions such that the constrained Pareto-frontier is concave. This

simplifies our problem because it allows us to focus on non-random contracts.1 We examine two

main cases: where agents are risk averse but preferences are such that non-negativity constraints on

consumption can be ignored, and where agents are risk neutral but consumption is constrained to be

non-negative (limited liability).

If agents are risk averse results depend on whether or not it is possible to sustain a first-best

allocation for some division of the surplus. If it is possible, convergence to the first best is monotone.

Otherwise there might be an initial monotone phase, but in the long-run, when there are two or more

states, monotonicity does not generally obtain: when the same state recurs, surplus will sometimes be

higher at the later date and sometimes lower. There is also a trade-off between achieving efficient

risk-sharing and maximizing current surplus even in the long run. In particular, and in contrast to the

risk-neutral case, current surplus is not maximized. Better risk-sharing is achieved by holding the

action of one agent inefficiently low because this reduces the outside option of the other agent, that is,

it relaxes the latter’s self-enforcing constraint. We show that the optimal contract depends on the past

history of states and so the “amnesia” property of the risk-sharing limited commitment model does

not hold.

When agents are risk neutral, we consider the implications of limited liability constraints and

show that optimal contracts involve two phases. In the first phase there is backloading with zero

consumption for the constrained agent, who overinvests up to the last period of the backloading phase

and the terms of the contract move monotonically in his/her favor. This overinvesment arises because

1 It would be straightforward to allow for random contracts by introducing a public randomization device, but at the
cost of considerable complexity of notation and statements of our results. Furthermore, the assumptions we make are
consistent with those that are commonly made in the literature.
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it allows a further transfer of utility to the other agent who consumes the extra output. It occurs

despite the hold-up problem, that in a static model would lead to underinvestment. Nevertheless, we

demonstrate that because of backloading it is never the case that both agents overinvest—even at

different dates—in any optimal contract. The second phase is stationary and independent of the initial

conditions. Consumption and investment depend on the state but not on the time period. Each agent

has positive consumption and, for a given state, either both invest efficiently or both underinvest. In

either case, current surplus is maximized subject to the self-enforcing constraints. Convergence to

the stationary phase is monotone in the sense that whenever the same state recurs in the backloading

phase, surplus is higher at the later date.

Related literature

A number of results for special or limiting cases of this model are known. First, one-sided-action

versions of this model or variations on it, have been studied by a number of authors (see, e.g.,

Albuquerque and Hopenhayn 2004, Kovrijnykh 2013, Sigouin 2003, Thomas and Worrall 1994).

Typically, this literature has considered the case where both agents are risk neutral, there is limited

liability and the agent taking the action can commit. To prevent the uncommitted agent from taking

his/her outside option, actions may be kept low initially. A key insight of this literature is that

incentives are improved when payments to the uncommitted agent are backloaded into the future.

This provides a growing carrot for adhering to the contract. Consequently, the action or investment of

the other agent can be increased in the future. This generates dynamics in the agent’s actions as well

as in monetary payments. In the long run, actions and transfers converge to a stationary distribution

that maximizes the surplus, output less action costs, given the self-enforcing constraints. The speed

of backloading is restricted by the limited liability constraints. Ray (2002) has established the most

general backloading result of this type. He considers a general, but non-stochastic, principal-agent

model in which both parties may take actions. The principal can commit within each period, so the

self-enforcing constraint only applies to the agent. He shows that an efficient contract has terms that

move in favor of the agent, converging in finite time to the efficient self-enforcing continuation that

maximizes the agent’s payoff. Our results generalize this backloading result to the case where both

agents undertake an action and neither agent can commit. Furthermore, we demonstrate that there

may be overinvestment in the risk-neutral case and in the risk-averse case, show that there may be
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a trade-off between productive efficiency and risk sharing even in the long run. Neither of these

properties occur in models where only one agent takes an action.

Second, consider the case where agents have no action to take, or where there is no hold-up

problem. In this case, the model involves sharing a stochastic endowment. The case in which agents

have their own stochastic endowment and can share risk subject to limited commitment constraints

has been widely studied (see, e.g., Kocherlakota 1996, Ligon et al. 2002, Thomas and Worrall 1988).

A result of this pure risk-sharing case is that a constrained Pareto-efficient allocation evolves toward

a stationary distribution, and that, for some parameter values, the distribution of future expected

utilities is non-degenerate. Although the distribution is non-degenerate, the solution exhibits an

“amnesia” property that once an agent is constrained, the contract from then on is independent of

the past history of shocks. With hold-up, the optimal contract depends on the past history of states

and does not in general exhibit the amnesia property of the pure risk-sharing model.2 Furthermore,

the pure risk-sharing literature only considers distributional issues and has no implications for the

efficiency and dynamics of actions that are the focus of this paper. Nevertheless, we are able to

demonstrate a limit result that as our hold-up problem vanishes, the optimal contract converges to the

standard pure-risking contract.

Third, there are a very few papers in this limited commitment literature that examine the situation

where two or more agents take actions. The most relevant paper to ours is Acemoglu et al. (2011)

that considers a model of changes in political power. In Acemoglu et al. (2011) a Markov process

determines which risk-averse political party is in power. Political parties take actions that contribute

to a common pool of resources whether in power or not, but only the party in power gets to determine

the allocation of resources across agents. Therefore, states are identified by the agent in power. It

is shown that in a constrained Pareto-efficient allocation, the action of one of the agents (the one in

power) is always chosen efficiently and actions of other agents (those not in power) are distorted

downward. Furthermore, they establish a convergence result that depends on whether a first-best

allocation is sustainable or not: if a first-best allocation is sustainable, then the actions and the division

of resources converges to a degenerate (first-best) distribution; otherwise, allocations converge to a

non-degenerate distribution (it need not be unique). The two-agent model with quasi-linear utility

2 Ábrahám and Lacsó (2013) establish a similar result in a model of risk-sharing model and storage. The absence of the
amnesia property is more consistent with the empirical evidence (see Broer 2013).
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considered in their paper corresponds to the limiting case of our model where in each state one

agent has all the property rights. We also establish convergence results but our results apply for

a general distribution of property rights and an arbitrary number of states and may result in the

actions of both agents being inefficiently low, even in the long run. Their convergence result, when

a first-best allocation is sustainable, corresponds to our Theorem 1(a). In Theorem 1(b), when a

first-best allocation is not sustainable, we establish convergence to a unique limiting distribution that

is independent of initial conditions.

Fourth, our model is related to the broader literature on relational contracting (see, e.g., Doornik

2006, Levin 2003, Rayo 2007) that builds on the work of Macleod and Malcomson (1989). This liter-

ature has studied models with more general ingredients (including many-sided actions, enforceable

payments, moral hazard, hidden information, and endogenous property rights), but has restricted

attention to stationary equilibria, thus, eliminating any interesting dynamics in investments and

transfers. The restriction to stationary equilibria is either derived, because stationary contracts are

optimal (when agents are risk neutral and in the absence of limited liability), or imposed, because

the focus is on organizational structures under which full efficiency can be achieved. Most of this

literature is therefore silent on the dynamics of relational contracts that are the main concern of this

paper.3

Illustrative example

To illustrate the model we have in mind, we present a simple example with no uncertainty and risk

averse agents.4 There are two agents with common discount factor δ ∈ (0,1) and an infinite horizon.

In each discrete period the action or effort of agent i is ai and joint output is additive

y(a1,a2) = f1(a1)+ f2(a2) = 2(
√

a1 +
√

a2) .

3 One exception to the focus on stationary contracts is Fong and Li (2017) who introduce limited liability and moral
hazard into a risk-neutral model firms and workers based on Levin (2003). They show that if the principal extracts most
of the surplus, the backloading of the agent’s utility can lead to a probationary contract in which the agent’s wage is
initially at the lower bound, and incentives are provided by the threat of termination; at some point this threat is removed
and the wage increases to a higher level.

4 For the purpose of constructing a simple example that illustrates the solution, we here ignore the non-negativity
constraints on consumption. We use parameter values such that the Pareto-frontier is concave. In the Supplementary
Material, we show how to fully solve this example using our characterization results and without having to use value
function iteration.
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Both agents have common preferences satisfying constant absolute risk aversion with coefficient 1/2:

ui(x) = 2
(

1− e−
1
2 x
)
,

where x := c−a, consumption less effort. Actions take place simultaneously at the beginning of each

period. At the end of the period, output is realized and it is divided between the two agents. Suppose,

that irrespective of how output is divided, agent i can unilaterally get a breakdown consumption

of φi(a1,a2) = θi1 f1(a1)+ θi2 f2(a2), that depends on the action of the other agent. For parameters

θ11 = θ22 = 0 and θ12 = θ21 = 1, this means that either agent can expropriate all of the other agent’s

output but if they do so they lose their own output. A relational contract is just an agreed sequence of

actions and division of the output from these actions. We assume that if a deviation occurs, in each

period thereafter the agents revert to short-run Nash equilibrium anticipating the breakdown payoffs

φi(a1,a2). With the specification for θi j just given, the short-run Nash equilibrium has ai,ci = 0 (and

hence, ui = 0) and the discounted payoff from a deviation, the deviation utility, is:

Di(a j) = ui
(
2
√

a j
)

= 2
(
1− e−

√a j
)
.

We characterize constrained Pareto optimal contracts, that is, within the set from which no agent

would deviate. At the first best, a∗1 = a∗2 = 1 and surplus z := y(a∗1,a
∗
2)−a∗1−a∗2 = 2 is maximal. This

is sustainable provided an equal split of surplus (x∗i = 1) is an equilibrium:

ui(1)

(1−δ )
=

2(1− e−
1
2 )

(1−δ )
≥ Di(1) = 2(1− e−1),

or δ ≥ (1 +
√

e)−1.

Suppose that δ ≥ (1 +
√

e)−1, so that the first-best allocation is sustainable. Let Vi denote the

lifetime utility of agent i. For δ > (1+
√

e)−1 surplus will be constant at its efficient level for a range

of values for V1. Consider starting from a feasible value of V1 below D1(1) = u1(2), i.e., worse for

agent 1 than the deviation utility at the first-best allocation. If a2 = a∗2, then agent 1 would deviate.

Therefore, a2 < a∗2; the best contract has a2 as high as possible, such that agent 1 does not wish to

deviate, i.e., V1 = D1(a2). Since we are assuming δ ≥ (1 +
√

e)−1, at any value of V2 on the Pareto

frontier V2 > u2(2). That is, agent 2 is unconstrained and a1 = 1 (is efficient). Since a2, and hence,



DYNAMIC RELATIONAL CONTRACTS 7

surplus z, is determined by the binding constraint V1 = D1(a2), both can be expressed as functions of

V1. Hence, in this example:

a1(V1) = 1,

a2(V1) =
(1

2u−1
1 (V1)

)2
=
(

log
(

1− V1
2

))2
,

z(V1) = 1 + u−1(V1)−
(1

2u−1
1 (V1)

)2
= 1−2log

(
1− V1

2

)
−
(

log
(

1− V1
2

))2
,

z′(V1) = u−1′
1 (V1)

(
1 + u−1(V1)

)
=
(

1 + log
(

1− V1
2

))(
1− V1

2

)−1
.

It is easily checked that z(V1) is increasing and concave in this region with z(0) = z′(0) = 1 and

z(u(2)) = 2 and z′(u(2)) = 0. We show below (equation (5) in Section 4) that for values of V1 where

the surplus is increasing in V1, as here for V1 < u1(2), then V1 will be higher next period. It follows

straightforwardly that V1 is an increasing sequence converging to u1(2). So, the contract converges

to the surplus maximizing actions, here the first best. We also show below (see equation (4b) in

Section 3) that surplus is divided so that u′2/u′1 is equal to the absolute value of the slope of the

(strictly concave) Pareto frontier in the following period. Since V1 is increasing over time, so too is

u′2/u′1.5 That is, the way the surplus is distributed (as well as V1) moves monotonically in favor of

agent 1. Thus, backloading of agent 1’s utility occurs, and in such a way as to guarantee efficiency in

the long-run.

The case where δ < (1 +
√

e)−1 is similar except convergence is to the constrained surplus

maximizing actions (that maximize surplus subject to deviation not being profitable); it is easily

checked that both constraints Vi = Di(a j) bind at this point and both will bind as the this point is

approached in any optimal contract. Thus, taking both cases together, there is convergence to the

constrained surplus maximizing actions for any δ .

Plan of paper

The paper extends this example to consider a more general production function and breakdown

payoffs. We consider multiple states and quasi-linear preferences including risk-neutrality and

non-negativity constraints on consumption. We show that the convergence result of the example

generalizes to the case with multiple states when the first-best is sustainable (and also when agents

5 Convergence of u′2/u′1 is to e(1−δ (1− e))−2 ≤ 1; convergence is to 1 for δ = (1 +
√

e)−1.
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are risk-neutral), but otherwise, with risk aversion and multiple states there is a trade-off between risk

sharing and efficiency and convergence to surplus maximization does not occur. In this case we show

that u′2/u′1 converges to a non-degenerate limiting distribution independent of the initial distribution

of the surplus.

The paper proceeds as follows. Section 2 describes the model. Section 3 provides some general

results that apply to both the risk-neutral and risk-averse cases. Section 4 analyzes the risk-averse

case and Section 5 the risk-neutral case. Section 6 concludes. Statements of lemmas and the proofs

of theorems are found in the Appendix. Proofs of Propositions and Lemmas are relegated to the

Supplementary Material.

2. MODEL

We consider a dynamic model of joint production where agents repeatedly undertake an action or

investment that generates a joint output. There is no asset accumulation and full depreciation of the

investment in each period. Once produced agents have the opportunity to unilaterally expropriate

some of the joint output for their own benefit. In this section, we shall describe the economic

environment and the set of dynamic relational contracts. We define a game played by the two

agents and identify dynamic relational contracts with the subgame perfect equilibria of that game.

Our interest is in optimal contracts, that correspond to the set of Pareto-efficient subgame perfect

equilibria.6

2.1. Economic environment

Time is discrete and indexed by t = 0,1,2, . . . ,∞. At the start of each period, a state of nature s is

realized from a finite state space S with n≥ 1 states. The state evolves according to an irreducible,

time homogeneous Markov chain with transition matrix [πsr], where ∑r∈S πsr = 1, all s ∈S . The

chain starts from an initial state s0 at date t = 0. We denote the state at date t by st and the history of

states by st = {s0,s1, . . . ,st}.

There are two agents, i = 1,2. At every date t, and after the state at that date is observed, both

agents simultaneously choose an action/investment ai ∈ R+. Actions produce an output ys(a)≥ 0

6 More precisely, we focus on efficient pure subgame-perfect equilibria relative to specified “Nash reversion” punishments,
although our characterization also applies mutatis mutandis to optimal punishments, should they be different, and hence,
to efficient equilibria among the set of all pure strategy equilibria.
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that depends on the state s and the action pair a := (a1,a2) (details are given below in Assumption 2).

Having observed actions and output, the agents agree to split output and each consumes non-negative

consumption ci, c := (c1,c2) ∈ R2
+. We impose that consumption is non-negative as a simple way to

reflect a limited liability constraint on the transfers one agent can make to the other. Consumption c

is feasible if c1 + c2 ≤ ys(a). Agent i derives per-period utility ui from net consumption xi := ci−ai,

x := (x1,x2) ∈ R2. We make the following assumptions on ui and ys:

ASSUMPTION 1: Per-period utility ui: [¯
xi,∞)→{−∞}∪R is a twice continuously differentiable,

strictly increasing and concave function of net consumption, where
¯
xi ≤ 0.

ASSUMPTION 2: For each s ∈S , the production function ys:R2
+→ R+ is twice continuously

differentiable, strictly increasing in both arguments and strictly concave. Furthermore, for each s∈S ,

∂ 2ys(a)/∂a1∂a2 ≥ 0 (complementarity); ys(0) = 0 and the upper contour sets {a ∈R2
+ | ys(a)−a1−

a2 ≥ γ}, γ ∈ R, are compact.

Assumption 2 imposes fairly standard conditions on the production function. The last part of

Assumption 2 is a simple way to restrict actions to a compact set A (s). Denote surplus in state s by

zs(a) := ys(a)−a1−a2. Define the first-best action pair a∗(s) as the actions that maximize surplus

in state s. Given Assumption 2, the first-best action pair exists and is unique. We refer to the surplus

zs(a∗(s)) as the first-best surplus. Since actions are chosen simultaneously and independently, we

also define the conditionally efficient actions a∗i (a j,s), i, j = 1,2, i 6= j, such that

a∗i (a j,s) := argmax
ai∈R+

[ys(a1,a2)−ai].

The conditionally efficient actions are single-valued, continuous functions of the other agent’s action.7

The weak complementarity assumption is slightly restrictive but reflects our view that relational

contracting framework is most natural when there are complementarities in production. Given the

weak complementarity assumption, conditionally efficient action functions are weakly upward sloping.

In addition, a∗i (s) = a∗i (a∗j(s),s) for i, j = 1,2, i 6= j.

7 This result is simple and straightforward to show. Formal statements of results of this type are stated as lemmas in the
Appendix and proofs are given in the Supplementary Material. For example, the fact that conditionally efficient actions
are single-valued and continuous is stated as Lemma 1 in the Appendix.
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We now specify what an agent can get if there is no agreement on how to divide up output. If no

agreement is reached, agent i gets a breakdown consumption of φ s
i (a), and hence, a breakdown utility

of ui(φ s
i (a)− ai). An agent can always take the option of receiving her breakdown utility. More

formally, we suppose the agents play a Nash demand game to divide output.8 In this Nash demand

game, both agents simultaneously announce consumption claims (c̃1, c̃2), c̃i ≥ 0. If c̃1 + c̃2 = ys(a),

then this determines the division of output: consumption ci = c̃i. Otherwise, agents receive their

breakdown consumption: ci = φ s
i (a).

The specific assumptions on φ s
i (a) are given below, but a simple example with proportional defaults

captures what we have in mind. Suppose that each agent can, by defaulting, capture a fraction θi of

the available output ys(a). Here, φ s
i (a) = θiys(a). We assume that agents cannot obtain more than

the available output, so θ1 + θ2 ≤ 1. We do not require that the sum exhausts available output. For

example, disagreement may incur a cost, such as lawyers’ fees or bargaining costs, so that some of

output is lost when there is default. In such cases, θ1 + θ2 < 1. We assume θi > 0, so that what an

agent gets in the breakdown is increasing in the action of the other agent. This assumption captures

the hold-up feature of joint production we wish to model.

As another example, consider the special case with additive production: ys(a) = f s
1(a1)+ f s

2(a2)

and suppose φ s
i (a) = θ s

i1 f s
1(a1)+ θ s

i2 f s
2(a2), θ s

i j ≥ 0 and ∑
2
i=1 θ s

i j ≤ 1, j = 1,2 (this is very similar to

the formulation used by Halonen (2002)). Our hold-up assumption requires θ s
i j > 0, i, j = 1,2, i 6= j.

With this parameterization, assuming ∑
2
i=1 θ s

i j = 1 and taking the limit as θ s
i j→ 0, for i, j = 1,2, i 6= j

and for all s ∈S , produces the pure risk sharing model that has been studied by Kocherlakota (1996),

Ligon et al. (2002) and others. This is discussed in Section 4.

Analogous to Assumption 2, we shall assume that φ s
i (a) satisfies:

ASSUMPTION 3: For each s ∈S and i = 1,2, the function φ s
i :R2

+→ R+ is continuous, twice

continuously differentiable, strictly increasing in both arguments and strictly concave. Moreover,

∂ 2φ s
i (a)/∂a1∂a2 ≥ 0 (complementarity) and ∂φ s

i (0,a j)/∂ai > 1 for all a j ∈R+, i, j = 1,2, i 6= j. In

8 This is approach is also used by Hall (2005), for example. What we want to capture is that there is an ex ante agreement
on what actions should be taken, and how the resulting output should be split, and that failure to abide by it leads to the
breakdown utilities. The Nash demand game is a simple way of implementing this idea – but we stress that our results are
not sensitive to the way it is operationalized. For a fuller discussion, see Hall (2005).
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addition, φ s
i (0,0) = 0 for i = 1,2 and

∂φ s
1(a)

∂ai
+

∂φ s
2(a)

∂ai
≤ ∂ys(a)

∂ai
∀s and i = 1,2.(1)

In the case of proportional defaults, these conditions (apart from ∂φ s
i (0,a j)/∂ai > 1) follow directly

from Assumption 2. Complementarity in Assumption 3 implies that the reaction functions in the

breakdown game are weakly upward sloping, and this simplifies the arguments below. Condition (1)

requires that the marginal change in the total breakdown consumption from a change in the action

of one of the agents cannot exceed the corresponding marginal product. Together with φ s
i (0,0) = 0,

it implies that the φ s
i (a) are feasible, that is, φ s

1(a) + φ s
2(a)≤ ys(a) for each a and s. Condition (1)

together with ∂φ s
i (0,a j)/∂ai > 1, i = 1,2 implies that the first-best action pair is strictly positive.

The assumption that φ s
i is strictly increasing in both its arguments, in particular that ∂φ s

i (a)/∂a j > 0

for i 6= j, captures the hold-up property of the model.

Denote the Nash best-response functions (functions because φ s
i (a1,a2) is strictly concave in ai) in

the breakdown game by

aN
i (a j,s) := argmax

ai∈R+

[φ s
i (ai,a j)−ai].

The Nash best response function aN
i (a j,s) is continuous and weakly increasing in a j. Moreover,

we have 0 < aN
i (a j,s) < a∗i (a j,s) for each a j and every state s ∈S . It is strictly positive because

∂φ s
i (0,a j)/∂ai > 1 and is less than the conditionally efficient action because of the hold-up assump-

tion that ∂φ s
i (a)/∂a j > 0. The best-response breakdown utility is

uN
i (a j,s) := ui(φ

s
i (aN

i (a j,s),a j)−aN
i (a j,s)).

A Nash equilibrium of the breakdown game occurs where the best-response functions intersect

(existence follows by standard arguments). Without further assumptions, the Nash equilibrium

need not be unique (though it is unique if the defaults are proportional). However, the potential

non-uniqueness is not critical because the Nash equilibria can be Pareto-ranked (because the best-

response functions are non-decreasing and all Nash equilibria lie below the first-best action pair

a∗(s)). Henceforth, we let (aNE
1 (s),aNE

2 (s)) denote the dominant Nash equilibrium and all our results

apply relative to this dominant Nash equilibrium.



DYNAMIC RELATIONAL CONTRACTS 12

2.2. Dynamic relational contracts

We refer to a non-negative action and consumption sequence {a(st),c(st)}t≥0 as a contract.

Corresponding to a contract, agent i’s lifetime utility is

Vi(s0) := E
[
∑

∞

t=0 δ
tui(ci(st)−ai(st)) | s0

]
,

where δ is a common discount factor, 0< δ < 1, and E denotes expectation. A contract is feasible if

∑i ci(st)≤ yst (a(st)) for every history st and ci(st)−ai(st)≥
¯
xi for i = 1,2 and every history st .

A dynamic relational contract is a feasible contract from which neither agent has an incentive

to deviate. The incentive to deviate depends on the punishment for deviation. This is given by the

breakdown payoffs in the current period (subsequent to the deviation), and by play of the (dominant)

equilibrium of the static breakdown game in all future periods. In particular, suppose that a is the

current recommended action pair. If agent i is to deviate at t, then the best she can do is to choose

aN
i (a j(st),st), which yields a current payoff uN

i (a j(st),st).9 She is punished from t+1 by “Nash

reversion” in which both agents choose their best responses in the breakdown game, that is, both will

thereafter play the (dominant) Nash equilibrium of the breakdown game described above.10

Let Ds
i (a j) denote the deviation utility: the best discounted payoff that agent i can get by deviating,

given agent j’s putative action a j in state s. It is defined recursively by

Ds
i (a j) := uN

i (a j,s)+ δ∑r∈S πsrDr
i (aNE

j (r)),

where Dr
i (aNE

j (r)) is the deviation utility from the play of the Nash equilibrium in state r. Given

our hold-up assumption (see Assumption 3), it follows that the deviation utility is continuous,

differentiable, strictly increasing and strictly concave in the action of the other agent.

9 Deviation at the output division stage cannot be preferable since breakdown is triggered in either case, and ai may not
be optimal in the breakdown.
10 A dynamic relational contract is equivalent to a pure strategy subgame perfect equilibrium relative to future reversion
to this Nash equilibrium. Here, strategies are infinite sequences of history-dependent actions and consumption claims.
Punishment consisting of immediate triggering of the breakdown, and repeated play of the (dominant) Nash equilibrium
of the breakdown game thereafter, is subgame perfect (each agent just demands the whole output after any deviation (i.e.,
off the equilibrium path), triggering the breakdown game each period).
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We stress that replacing the Nash reversion punishments by any state dependent continuation

utilities that are no greater than the Nash reversion punishments leaves all the characterization results

we derive intact. In particular, optimal punishments satisfy this property. Equally, if agents can take

state-dependent outside options at the start of any period, then, provided these outside options satisfy

the condition that they are no greater the Nash reversion punishments, all our results apply. For

example, if in periods after a default the breakdown consumptions/utilities were lower than they are

in an on-going relationship, then our results still hold.

Since an agent can always take the option of receiving her breakdown utility, the deviation utility

provides a lower bound (as a function of the other agent’s action) on the discounted utility an agent

gets in any dynamic relational contract . Hence, {a(st),c(st)}∞
t=0 is a dynamic relational contract if it

is feasible and if for every st , and i, j = 1,2, i 6= j,

Vi(st) := ui(ci(st)−ai(st))+E
[
∑

∞

τ=t+1 δ
τ−tui(ci(sτ)−ai(sτ)) | st

]
≥ Dst

i (a j(st)).(2)

The continuation utility Vi(st) is the discounted utility that agent i anticipates from the contract after

the history st . The right hand side of (2) is the deviation utility agent i gets from deviating from

the recommended action after the history st . We refer to the inequalities (2) as the self-enforcing

constraints. Whenever (2) holds with equality, we say that agent i is constrained. Otherwise, we say

that agent i is unconstrained.

Dynamic relational contracts exist. For example, the trivial contract that has ai(st) = aNE
i (st) and

ci(st) = φ
st
i (aNE(st)) for all st is both feasible and self-enforcing and therefore a dynamic relational

contract. We show below (see Proposition 2) that there exist other non-trivial dynamic relational

contracts.11 Corresponding to any dynamic relational contract, {a(st),c(st)}∞
t=0, and initial state s0, is

a pair of lifetime utilities (V1(s0),V2(s0)). Given the set of dynamic relational contracts, let Vs0 denote

the set of the corresponding lifetime utilities. Our objective is to characterize contracts corresponding

to the Pareto-frontier of the set Vs0 . We refer to dynamic relational contracts that correspond to this

Pareto-frontier as optimal contracts and refer to the corresponding actions as optimal actions. We say

that agent i underinvests (or that the action is inefficiently low) at some date t in an optimal contract

if the optimal actions are such that ai(st)< a∗i (a j,s) and say the agent overinvests (or the action is

11 Intuitively, hold-up creates an inefficiency and provided δ > 0, repeated game arguments allow cooperation to improve
on the breakdown Nash equilibrium.
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inefficiently high) if ai(st)> a∗i (a j,s). Given the stochastic history st , we can treat an optimal contract

as a stochastic process for (a,c). We will be interested in the long-run behavior of this process and

whether it converges, and if so, whether convergence is dependent on s0 or V1(s0).

3. PRELIMINARY RESULTS

This section establishes some preliminary results on the Pareto-frontier of the set of dynamic

relational contracts and optimal actions. Section 4 considers the case where agents are risk averse

and Section 5 will consider the case where agents are risk neutral.

3.1. Relationship to the Nash actions

PROPOSITION 1: In any optimal contract (i) actions are never below the Nash reaction functions,

ai(st)≥ aN
i (a j(st),st), and a(st)≥ aNE(st)> 0 for all st; (ii) an agent who is allocated all current

output and who is not overinvesting (i.e., ai(st)≤ a∗i (a j(st),st)), is unconstrained.

The intuition for (i) is that if the action of one of the agents, say agent 1, were below the Nash

reaction function, a Pareto improvement could be found by increasing the action of agent 1 by a small

amount. Although the deviation utility of agent 2 increases (by hold-up), his consumption can be

increased to prevent a violation of his self-enforcing constraint, and there is sufficient extra output

remaining to more than compensate agent 1 for the increase in her action. This property then implies

that actions can never be below the Nash equilibrium actions, a(st)≥ aNE(st). Since it can be shown

that the Nash equilibrium actions are strictly positive, aN
i (a j,s)> 0, it follows that optimal actions

are always positive too. Although (ii) is not trivial, it is unsurprising. Suppose, say, that agent 1 is

allocated all of the current output. Then, agent 1 is receiving more of output than she would obtain in

the breakdown game, if she held her action constant (because, by Assumption 3, agent 2 can claim

a positive share of output in the breakdown game). The continuation utility cannot be lower than

the deviation continuation utility, so a deviation will lead to output being shared and a punishment

continuation, worse than the equilibrium path and thus, agent 1 could not be constrained.

3.2. Concavity, continuity and differentiability

We define V s
2 (V s

1 ) to be the Pareto-frontier of the set Vs. It is not necessarily concave; in particular

the concavity of the deviation utility D j(ai) in the action of the other agent implies that the self-

enforcing constraints (2) may not be satisfied at average actions and hence the constraint set need
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not be convex. Nevertheless, the Pareto-frontier can be shown to be concave under some additional

restrictions. We state and discuss two alternative sufficient conditions for concavity in the Appendix,

Assumption A.4 and Assumption A.5.

PROPOSITION 2: For each s ∈S (i) under either Assumption A.4 or Assumption A.5, V s
2 (V1) is a

continuous and concave function of V1 defined on a non-degenerate closed interval [
¯
V s

1 ,V̄
s
1 ], and is

continuously differentiable on its interior. Moreover,

V s(+)
2 (

¯
V1) = 0 and V s(−)

2 (V̄1) =−∞,

where V s(+)
2 denotes the right and V s(−)

2 the left derivative. (ii) Under Assumption A.4, V s
2 (V1) is

strictly concave if ui is strictly concave, i = 1,2, or over any interval such that as(V1) varies with V1;

under Assumption A.5, V s
2 (V1) is strictly concave over any interval such that as(V1) varies with V1.

We use Assumption A.4 in Section 4 that considers the case where agents are risk averse. It requires

two things: the first is essentially that the curvature of the deviation utility is less than the curvature

of surplus as a function of actions. The second is that an optimal contract has xi > 0, i = 1,2 at every

date. The latter follows, for example, for utility functions (such as those with constant relative risk

aversion with coefficient of risk aversion greater than or equal to one) where limx→0 u(x) =−∞. We

use Assumption A.5 in Section 5 that considers the case where agents are risk neutral. It requires

that the production function is more concave than the corresponding deviation utility. It is satisfied

in many reasonable examples and Assumption A.5 is a generalized version of the condition given

in Thomas and Worrall (1994).

In the one-sided action case where only one agent undertakes an action, it is known that the value

function can fail to be differentiable (Thomas and Worrall 1994). It is perhaps surprising, then, that in

this two-sided case we are able to establish differentiability. The key observation is that since optimal

actions are positive, it is possible to vary both actions simultaneously, holding the future utilities

constant, so as to vary V1 whilst satisfying the self-enforcing and feasibility constraints.

3.3. Recursive formulation

We now use a recursive programming approach to examine optimal contracts. It is useful to work

with net consumption xi as a choice variable instead of consumption ci. The Markov assumption on



DYNAMIC RELATIONAL CONTRACTS 16

the evolution of states and the infinite time horizon, together with the observation that all the self-

enforcing constraints are forward looking, means that the set of continuation utilities corresponding

to a dynamic relational contract depends only on the state r and is independent of the past history.

V s
2 (V s

1 ) is characterized as follows:

PROPOSITION 3: V s
2 (V s

1 ), V s
1 ∈ [

¯
V s

1 ,V̄
s
1 ], is a solution to the following program

[P1] V s
2 (V1) = max

a≥0,x≥
¯
x,(V r

1∈R)r∈S

{
u2(x2)+ δ ∑r∈S πsrV r

2 (V r
1 )
}

subject to

u1(x1)+ δ ∑r∈S πsrV r
1 ≥V1: λ(3a)

V1 ≥ Ds
1 (a2) : µ1(3b)

u2(x2)+ δ ∑r∈S πsrV r
2 (V r

1 )≥ Ds
2 (a1) : µ2(3c)

V r
1 ≥ ¯

V r
1 : δπsrν

r
1(3d)

V r
1 ≤ V̄ r

1 : δπsrν
r
2(3e)

xi + ai ≥ 0 : i, j = 1,2, i 6= j γi(3f)

x1 + x2 ≤ zs(a1,a2): ψ(3g)

The non-negative Lagrangian multipliers are indicated after each inequality. The expected dis-

counted utility V1 of agent 1 (in state s) is the state variable in this programming problem. The value

function V s
2 (V1) represents the Pareto-frontier of the set of dynamic relational contracts in the space

of continuation utilities. It describes how the maximum continuation utility to agent 2 changes as the

continuation utility of agent 1 is changed. The inequality (3a) is the promise-keeping constraint that

requires that the contract delivers at least the current discounted utility. The inequalities (3b) and (3c)

are the self-enforcing constraints corresponding to the inequalities given in (2). The constraints (3d)

and (3e) reflect that the continuation utility for agent 1 in state r must lie in the interval [
¯
V r

1 ,V̄
r
1 ].

Inequalities (3f) and (3g) are the feasibility constraints.

We denote a solution to [P1] by (as(V1),xs(V1)) and continuation utilities (V s,r
1 (V1)). It can be

shown that as(V1) is unique; however, xs(V1) and V s,r
1 (V1) need not be. Corresponding to this solution,

and abusing notation, we define the surplus zs(V1) := zs(as
1(V1),as

2(V1)). We discuss the properties of

zs(V1) below, but we refer to the maximal value of zs(V1) for V1 ∈ [
¯
V s

1 ,V̄
s
1 ] as the constrained maximal



DYNAMIC RELATIONAL CONTRACTS 17

surplus and the actions that maximize this surplus as the constrained surplus-maximizing (CSM)

actions. Let ā(s) denote the CSM action in state s.12 If the CSM actions are equal to the first-best

actions ā(s) = a∗(s) (and hence the constrained maximal surplus equals the first-best surplus), then

we say that the first-best is sustainable in state s. We denote the set of states in which the first-best

actions are sustainable as S∗ ⊆S and denote its complement by S c
∗ (it is possible that S∗ = /0 or

S c
∗ = /0). A first-best allocation (FBA) will involve the first best actions, a∗(s), in each state and date

and complete risk-sharing (that is, net consumption x∗(s) with x∗1(s) + x∗2(s) = zs(a∗(s)) such that

u′2(x∗2(s))/u′1(x∗1(s)) is constant over all states and dates).

An optimal contract is computed recursively. Start from some given initial value for agent 1’s

lifetime utility, V1(s0) in state s0. The solution to the programming problem provides optimal values

for a(s0) and x(s0) in state s0 by setting V1 = V1(s0) in [P1]. The solution also determines the

continuation utilities for V s0,r
1 (V1(s0)) in each possible subsequent state r. At date t = 1 and history

s1 = (s0,s1), the value for V1 is determined by the solution for the continuation utility at date t = 0 for

the appropriate state and the solution to the date t = 1 programme determines a(s1) and x(s1). The

process is repeated to determine {a(st),x(st)}∞
t=0. Doing this for each V1(s0) ∈ [

¯
V s0

1 ,V̄
s0
1 ] determines

the set of optimal contracts.

3.4. First-order conditions

From Proposition 2 the Pareto-frontier is continuously differentiable and the range of absolute

slopes of the frontier is R+∪{∞}. Let σs(V1) := −V s′
2 (V1) and σ+

s,r(V1) := −V r′
2 (V s,r

1 (V1)) be the

(absolute) slopes of the Pareto-frontiers, where σs: [¯
V s

1 ,V̄
s
1 ]→ R+∪{∞} is strictly increasing. The

first-order conditions for [P1] are given by:

σ
+
s,r(V1)−σs(V1) =−σs(V1)

µ2

1 + µ2
+

µ1

1 + µ2
+

νr
1−νr

2
1 + µ2

(4a)

σ
+
s,r(V1) =

u′2(·)
u′1(·)

+
γ2− γ1

u′1(·)(1 + µ2)
+

νr
1−νr

2
1 + µ2

(4b)

µ j

1 + µ2

dDs
j

dai
=

∂ zs

∂ai

(
u′2(·)+

γ2

1 + µ2

)
+

γi

1 + µ2
i, j = 1,2 and i 6= j.(4c)

12 In principle, there may be dynamic relational contracts in which there are actions that achieve a higher surplus but at
the cost of lower future surplus. Our definition considers only optimal contracts. However, in both the risk-neutral and
risk-averse cases that we consider below, the two concepts coincide and the CSM actions do maximize zs(d1,d2) subject
to the self-enforcing constraints. It will also be shown below that in the cases we consider, the CSM actions are unique.
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Since the range of absolute slopes of the frontier is R+∪{∞}, it is intuitive that σ+
s,r(V1) is the same for

each future state r ∈S . To see this first suppose that νr
1 > 0. In this case V s,r

1 (V1) =
¯
V r

1 , σ+
s,r(V1) = 0

and by a complementary slackness condition νr
2 = 0. Then using equation (4a),−σs(V1)−µ1 = νr

1 > 0

which gives a contradiction since σs(V1) and µ1 are non-negative. A similar argument can be made

to show that νr
2 = 0. Since νr

i = 0, it follows from (4a) that σ+
s,r(V1) is independent of r and we

write σ+
s (V1) for this common future value. This property greatly simplifies the dynamics of the

contracting problem.

It follows directly from the first-order conditions (4c) that in an optimal contract (i) there is only

ever underinvestment, ai(st) < a∗i (a j(st),s), if at least one of the agents is constrained; and (ii) if

agent i has positive consumption, then he/she does not overinvest, ai(st)≤ a∗i (a j(st),s). To see the

intuition for the first part, suppose that agent 1 is unconstrained. If agent 2 were underinvesting, he

could increase investment and generate more surplus. The surplus would be enough to compensate

him for the extra investment and agent 1 won’t default because she is unconstrained. Thus, it would

be possible to find a better contract, yielding a contradiction. Similarly, to see the second part,

suppose that agent 1 is overinvesting. Then she could reduce her investment. This relaxes agent 2’s

self-enforcing constraint (keeping consumptions now and future promises the same). However, output

has fallen, so aggregate consumption must fall. If agent 1 has positive consumption, it is possible to

keep the consumption of agent 2 the same, while the utility of agent 1 increases because she has cut

her investment from above the conditionally efficient level.

There is also a simple corollary to these results: a) both agents cannot be overinvesting (because

one agent must have positive consumption); b) an agent cannot be permanently overinvesting because

consumption must be positive at some future date – otherwise the self-enforcing constraint would not

be satisfied.

4. RISK AVERSION

For this section we assume that agents are risk averse: we strengthen Assumption 1 and assume

that ui is strictly concave for i = 1,2, and use Assumption A.4 from the Appendix. In particular, it is

assumed that net consumption and hence, consumption is strictly positive in an optimal contract. It

will follow from this that overinvestment is not a feature of an optimal contract. The allocation of net
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consumption between agents may vary, potentially considerably, across states even in the long-run.

Thus, it is important to examine how allowing for risk aversion affects optimal contracts.

4.1. Characterization of optimal contracts

In this sub-section, we consider some properties of the optimal contract and surplus as V1 varies

in a given state, and how the contract is updated period-by-period: in particular, how the ratio of

marginal utilities changes from one period to the next. In the following sub-section, we consider the

long-run properties of the optimal contract showing that it evolves towards a stationary distribution

and study when this stationary distribution does or does not depend on the value of agent 1’s lifetime

utility V1(s0).

PROPOSITION 4: With risk-averse agents and under Assumption A.4 (i) there is no overinvestment,

∂ zs(a(st))/∂ai ≥ 0, i = 1,2, all st ; (ii) surplus zs(V1) is a concave differentiable function (strictly

concave if s ∈S c
∗ ) with maximum at unique CSM actions; (iii) at V1 such that zs(V1) is maximized, if

s ∈S c
∗ both constraints bind and as(V1)< a∗(s), and if s ∈S∗ efficient actions a∗(s) are sustainable

by definition; (iv) for each V1 ∈ [
¯
V s

1 ,V̄
s
1 ], σ+

s (V1), the (absolute value of the) common slope of the

Pareto-frontiers next period, and σs(V1), the slope of the current Pareto-frontier, satisfy

σ
+
s (V1)−σs(V1) = u′2

dzs(V1)

dV1
.(5)

The intuition for (i) was discussed above in Section 3.4 when ci > 0 for i = 1,2. Properties (ii)

and (iii) are illustrated in Figure 1.13 Equation (5) in part (iv) is fundamental to understanding the

dynamics of an optimal contract. It is easy to interpret. Consider a (small) unit increase in V1. The

effect on agent 2’s discounted utility is to change it by approximately V s ′
2 (V1) =−σs(V1) units. One

way to effect this change (as good as any other at the optimum) is to hold the current utility of

agent 1 constant (giving any change in the current surplus to agent 2) and increase V r
1 in each state r,

the next-period continuation utilities of agent 1, by 1/δ . The effect on agent 2’s current utility is

u′2(dzs(V1)/dV1). The effect on the discounted continuation utility of agent 2 is to decrease it by

13 Where χ̄s
1 and

¯
χs

1 are the values for V1 such that agent 1’s constraint binds for V1 ≤ χ̄s
1, while agent 2’s constraint

binds for V1 ≥
¯
χs

1; surplus is maximized at χ̂s
1 in case (b). See the Supplementary Material for further details. Note

that both constraints bind for values of V1 ∈ (
¯
χs

1, χ̄
s
1) in Figure 1b. This contrasts with pure risk-sharing models with

limited commitment, for example, Kocherlakota (1996) or Thomas and Worrall (1988), where at most one self-enforcing
constraint binds at any one time in any non-trivial optimum.
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σ+
s (V1) = σs(V1)

σ+
s (V1) < σs(V1)σ+

s (V1) > σs(V1)

zs(V1)

as2(V1)=a∗2(s)as2(V1)<a∗2(as1(V1), s) as2(V1)=a∗2(as1(V1), s)

as1(V1)=a∗1(s)as1(V1)=a∗1(as2(V1), s) as1(V1)<a∗1(as2(V1), s)

V1

zs(V1)

χ̄s
1 χs

1

(a). s ∈S∗

σ+
s (V1) = σs(V1)

σ+
s (V1) < σs(V1)σ+

s (V1) > σs(V1)

zs(V1)

as2(V1)<a∗2(as1(V1), s)

as1(V1)<a∗1(as2(V1), s)

as2(V1)<a∗2(as1(V1), s) as2(V1)=a∗2(as1(V1), s)

as1(V1)=a∗1(as2(V1), s) as1(V1)<a∗1(as2(V1), s)

V1

zs(V1)

χs
1

χ̄s
1χ̂s

1

(b). s ∈S c
∗

FIGURE 1: Surplus Function zs(V1)

σ+
s (V1), the same for all future states. The combined effect for agent 2 is u′2(dzs(V1)/dV1)−σ+

s (V1).

Since the overall change in utility for agent 2 is −σs(V1), we can equate to get equation (5).

The implication for the dynamics of optimal contracts is illustrated in Figure 1. Consider starting

from a value of V1 below the level that maximizes surplus. In this region, agent 1’s constraint

binds (Ds
1(as

2(V1)) = V1) and a2 is kept inefficiently low (as
2(V1)< a∗2(as

1(V1),s)) to prevent agent 1

from deviating. In this region, V2 may be high enough to allow a1 to be conditionally efficient

(as
1(V1) = a∗1(as

2(V1),s)) without violating agent 2’s constraint, but if s ∈ S c
∗ , then, closer to the

surplus maximizing value of V1, both constraints will bind and a1 will be inefficiently low. Also, in

this region, dzs(V1)/dV1 > 0, so equation (5) implies that σ+
s (V1)> σs(V1). In particular, if there is

a single state or if the same state recurs, the change in V1 is as indicated by the arrows in Figure 1.

In this case, surplus will be higher next period as the increase in V1 allows the extent of agent 2’s

underinvestment to be reduced, and by enough to offset any increase in underinvestment by agent 1.

(We discuss the implications when states switch below.) A symmetric argument applies to the

dynamics for high values of V1.
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4.2. Long-run dynamics

To examine long-run convergence, we treat choices at date t as random variables and write

x1(t) for the random value of net consumption of agent 1 at date t after history st etc. Define

ρ(t) := u′2(x2(t))/u′1(x1(t)) to be the ratio of marginal utilities at date t (ρ(t) = σ(t+1)). In this

subsection we focus on the long-run properties of ρ(t).

With more than one state, convergence to constrained surplus maximization may not occur because

there is a conflict between risk sharing and surplus maximization. To achieve surplus maximization

in state s, the distribution of consumption may differ from that in s′ 6= s and therefore, an optimal

contract must (dynamically) trade-off risk sharing against surplus maximization.

As already described, there is a (possibly trivial) interval of marginal utility ratios corresponding

to maximum surplus in any state s. Let [
¯
ρs, ρ̄s] denote this interval in state s.14 By equation (5), the

marginal utility ratio is unchanged from the previous period if (and only if) surplus is maximized today

(i.e., ρ(t) ∈ [
¯
ρst , ρ̄st ] ). Thus, a constant marginal utility ratio requires that Ω := ∩s∈S [

¯
ρs, ρ̄s] 6= /0.

The set Ω is non-empty when an FBA is sustainable, in which the ratio is constant. If Ω is not

only non-empty but a non-trivial interval, then there are multiple FBAs. Moreover, if an FBA is

sustainable, then monotone convergence to an FBA occurs. If however, Ω is empty, or if CSM actions

are not always efficient, an FBA is not sustainable and the marginal utility ratio may not converge to

a single value. Nevertheless, under a weak regularity condition, it does converge to a unique long-run

invariant distribution, independent of the initial conditions.

To describe the evolution of the marginal utility ratio, let F(V1(s0))
t :R+→ [0,1] denote the distribu-

tion function of ρ(t) at date t given the initial value V1(s0). This leads us to the following general

convergence theorem.15

THEOREM 1: a) Suppose an FBA is sustainable. Then an optimal contract converges with proba-

bility one to an FBA: ||a(t)−a∗(st)|| → 0 and the random sequence {ρ(t)} is (weakly) monotone,

with probability one. If there exist multiple FBAs, then the limit FBA depends upon V1(s0).

(b) Suppose instead that an FBA is not sustainable. Then, provided πss > 0 for all s, F(V1(s0))
t con-

14 For s ∈S∗,
¯
ρs = σs(χ̄s

1) and ρ̄s = σs(
¯
χs

1) and for s ∈S c
∗ ,

¯
ρs = ρ̄s = σs(χ̂s

1) (see Figure 1).
15 We use ||·|| to denote the Euclidean norm.
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verges weakly to a unique distribution independent of V1(s0). Either (i) this distribution is degenerate,

in which case dynamics are as in part (a), with stationary limit contract with CSM actions ā(s) in

each state, or otherwise (ii) this distribution is non-degenerate, and current surplus is not maximized

in the long run: ||a(t)− ā(st)|| → 0 with probability zero.

In part (a) of Theorem 1, there is convergence to an FBA. There is a (possibly trivial) interval

of the ratio of marginal utilities given by the set Ω that are compatible with efficient actions and a

constant marginal utility ratio. Convergence will be to the lower endpoint of Ω if the initial marginal

utility ratio is below the interval; to the upper endpoint of Ω if initial marginal utility ratio is above

the interval; and the sequence of marginal utility ratios will be constant if the initial marginal utility

ratio belongs to Ω. The dynamics are similar in Part (b)(i), which considers the case where there is an

marginal utility ratio consistent with CSM actions in each state. Convergence is to the CSM actions

and to this (unique marginal utility) ratio. This case arises if there is a single state but CSM actions

are not efficient.16 If there are multiple states and CSM actions in each state are inefficient, then this

case is possible but not generic in the sense that a small perturbation of either φ s
i or ys in any state s

will lead to the case of Part (b)(ii).

Part (b)(ii) of Theorem 1 provides a description of what happens when there is a conflict between

surplus maximization and risk sharing. The optimal contract exhibits a second-best property. The

marginal utility ratio ρ(t) does not settle down to a single value, and whenever it differs across two

dates t−1 and t, actions at date t will not be CSM.17 By contrast, in the risk-neutral case, we show that

once the stationary phase is reached surplus is maximized in each state by varying the continuation

utility to allow the constrained maximal surplus to be achieved (Theorem 2). For example, if the

state changes from one in which agent 1 can claim most of output to one in which roles are reversed,

sufficient surplus and future utility is reallocated to agent 2 to satisfy his self-enforcing constraint

at the CSM actions for that state. However, in the risk-averse setting of part (b)(ii) of Theorem 1,

risk-sharing considerations make such an immediate step change undesirable. It is better to hold

agent 1’s action at the later date inefficiently low, keeping agent 2’s default payoff from rising too

16 For the single state case irrespective of whether s∈S∗ or not, {ρ(t)}monotone implies {zs(t)} is monotone increasing,
converging to constrained maximal surplus, as indicated by the arrows in Figure 1.
17 Formally, ρ(t−1) 6= ρ(t) corresponds to σ(t) 6= σ(t+1), and thus, from (5), dzst (V1(t))/dV1 6= 0. Hence, actions at
date t are not CSM, as claimed.
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much, thereby relaxes the latter’s self-enforcing constraint meaning that the share going to agent 2

does not rise to that consistent with the CSM actions.

To better understand this dynamic trade-off between surplus maximization and risk sharing suppose

to the contrary that the ratio of marginal utilities differs across two dates t−1 and t, but actions at

date t are CSM. Then a simple change in the contract at t−1 and t can produce a Pareto-improvement.

Consider the case where ρ(t−1)> ρ(t). Initially hold actions fixed at both dates and increase x1(t)

by a small amount, but reduce x1(t−1) to leave V1(t−1) unchanged. If surplus were unchanged

at t, this would improve risk sharing and lead to a Pareto-improvement because V2(t−1) would

increase. However, because x2(t), and hence V2(t), have fallen, agent 2’s self-enforcing constraint

may be violated at the initial actions (and will be, if the CSM actions are below the first-best). In

order not to violate agent 2’s self-enforcing constraint, agent 1’s action at date t can be reduced.

Correspondingly, agent 2’s action can be increased because V1(t) has risen. Critically, although this

change may reduce surplus at date t, it does so only by a second-order amount since, by assumption,

the original actions at date t were CSM.18 Consequently, a Pareto-improvement results, contradicting

the supposed optimality of the original situation.

4.3. Pure risk-sharing

We now compare our results to the standard limited commitment, two-agent, pure risk-sharing

model of Kocherlakota (1996), Ligon et al. (2002), Thomas and Worrall (1988). To do this, for

simplicity we consider a special case of our hold-up model with additive production (here we

return to treating actions ai as choice variables), ys(a) = f s
1(a1)+ f s

2(a2), and proportional defaults,

φ s
i (a) = θ s

i1 f s
1(a1) + θ s

i2 f s
2(a2) where θ s

i j ≥ 0, i, j = 1,2, and ∑
2
i=1 θ s

i j = 1, j = 1,2. Our hold-up

assumption requires θ s
i j > 0, i, j = 1,2, i 6= j, all s. Holding technology and preferences fixed,

consider the limit case where hold-up vanishes: θ s
i j = 0, i, j = 1,2, i 6= j, all s. This corresponds to

the pure-risk sharing model. In any optimal contract of this limit model actions are clearly efficient,

as are actions in the breakdown, so only efficient levels play any role. Agent i’s “endowment” in state

s is f s
i (a∗i (s))−a∗i (s) and breakdown utility is u( f s

i (a∗i (s))−a∗i (s)).

18 The change in surplus would be second order when V1 and V2 are varied according to the Pareto frontier at t starting
from maximum surplus; because the frontier’s slope is −ρ(t) at maximum surplus, the change we construct also only
has a second-order effect. Also, note that, by construction, the self-enforcing constraints hold at t, and since V1(t−1) is
unchanged and V2(t−1) is increased, they also hold at t−1.
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We establish that the dynamics of the hold-up model converge to that of the risk-sharing model. In

the latter, as is well known, dynamics are summarized in a simple updating rule for ρ(t) (which fixes

surplus division given surplus depends only on s). We characterize how the corresponding updating

rule in the hold-up model converges to the risk-sharing one as hold-up disappears. One application of

this is that it allows us to characterize general properties of the hold-up dynamics for cases where

hold-up is low.

From Ligon et al. (2002), the updating rule in the pure risk-sharing case, which we write ρ(t) =

hRS(ρ(t−1),st), has the property that there is a (possibly degenerate) interval [
¯
ρRS

s , ρ̄RS
s ] for each s

such that hRS(ρ(t−1),s) = ρ̄RS
s if ρ(t−1)> ρ̄RS

s ; hRS(ρ(t−1),s) = ρ(t−1) if ρ(t−1)∈ [
¯
ρRS

s , ρ̄RS
s ] and

hRS(ρ(t−1),s) =
¯
ρRS

s if ρ(t−1)<
¯
ρRS

s . Moreover, there exists
¯
δ > 0 such that for 1≥ δ >

¯
δ , optimal

contracts that improve on autarky exist, and each [
¯
ρRS

s , ρ̄RS
s ] is non-degenerate (Proposition 2(iv) in

Ligon et al. 2002).

Likewise, in the hold-up model we can also use (ρ(t−1),st) as the state variable. (By ρ(t−1) =

σ(t), this is equivalent to (σ(t),st).) Thus, the evolution of the contract can be represented by ρ(t) =

h(ρ(t−1),st), where h:R+∪{∞}×S →R+ (see the Appendix for details and characterization). The

updating functions h(ρ,s) converge to those of the pure risk-sharing model as the hold-up problem

diminishes. Moreover, for ρ(t−1) within the interior of the interval [
¯
ρRS

st
, ρ̄RS

st
], when hold-up is small

enough, optimal actions at t are at the first-best levels and so ρ(t) = ρ(t−1). An illustration of this

convergence for two states is depicted in Figure 2.

PROPOSITION 5: For each state s∈S , (i) for all ρ ∈R+, h(ρ,s)→ hRS(ρ,s) as θi j→ 0, i, j = 1,2,

i 6= j, all s. (ii) For δ >
¯
δ and any η satisfying (1/2)(ρ̄RS

s −
¯
ρRS

s )> η > 0, all s, there exists ε > 0

such that for θ s
i j < ε , i, j = 1,2, i 6= j, all s, h(ρ,s) = ρ for all ρ ∈ [

¯
ρRS

s + η , ρ̄RS
s −η ].

One well-known feature of the pure risk sharing model is the “amnesia” property that once one

of the agents is constrained, then the previous history is irrelevant to the future evolution of the

optimal contract. This property no longer applies in our model of risk averse agents with actions.

Suppose that agent 2’s self-enforcing constraint binds at date t. In the risk-sharing problem, this

fixes his continuation utility and there is a unique optimal way of delivering this continuation utility

independently of past history and, in particular, independently of the previous ratio of marginal

utilities. This can be seen in the flat sections of the functions hRS(ρ,s) in Figure 2. In the hold-up



DYNAMIC RELATIONAL CONTRACTS 25

ρRS
2

ρ̄RS
1 ρ(t−1)

ρ(t)

h(ρ, 1)

h(ρ, 2)

hRS(ρ, 1)

hRS(ρ, 2)

45◦

FIGURE 2: Convergence to Pure Risk-Sharing

problem, by contrast, agent 2’s self-enforcing constraint can be relaxed by cutting agent 1’s action.

Although this change may reduce surplus, sacrificing surplus can be offset by improved risk sharing

and the incentive to do this will vary with the lagged marginal utility ratio. The logic of trading off

surplus to improve risk sharing is similar to the explanation given above for why the partial insurance

case involves optimal actions that are not CSM, even in the long run. This result is illustrated in

Figure 2 by the fact that the functions h(ρ,s) are upward sloping even away from the 45◦ line. Thus,

even when an agent is constrained, past history affects the current actions and consumption and the

future evolution of the optimal contract. The amnesia property fails.

5. RISK NEUTRALITY

For this section, we use Assumption A.5 and suppose that both agents are risk neutral, in particular,

that ui(x) = x and that
¯
xi =−∞ for i = 1,2. In this case, the non-negativity constraint on consumption

(limited liability) plays a key role. We show that an optimal contract exhibits a two-stage property. It

starts with a backloading phase in which one of the agents consumes all of the output. This agent

never overinvests, while the other agent overinvests. The second phase is stationary and actions

are CSM. Therefore, if s ∈S∗, actions are at the first-best for both agents. If s ∈S c
∗ , both agents
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underinvest and have positive consumption. Depending on the initial division of surplus however, the

optimal contract might start off in the stationary phase in which case the first backloading phase does

not exist.

The lower bound for the deviation utility is strictly positive. Therefore, the Pareto-frontier is

defined on Λs := [
¯
V s

1 ,V̄
s
1 ]⊂ R++. It can be shown that the frontier is strictly concave if at least one

of the self-enforcing constraints is binding. If V1 is in an interval where the efficient actions are

sustainable (such values may not exist), then the frontier is linear with slope of −1 in this interval. In

either case, CSM actions are unique.

Consider three (not necessarily disjoint) subsets of Λs: As = {V1 ∈Λs:co
1 = 0}, Bs = {V1 ∈Λs:co

1 >

0 and co
2 > 0} and Cs = {V1 ∈ Λs:co

2 = 0} where (co
1,c

o
2) represents an optimal value for consumption

at V1. Note that As∪Bs∪Cs = Λs. Also note that As can be non-empty and Cs empty or vice-versa

(examples of this type can be constructed). We know from our previous discussion that if agent 1

overinvests, this can only occur for V1 ∈ As, and if agent 2 overinvests, this occurs for V1 ∈Cs. Also,

since optimal actions are positive, output and aggregate consumption is positive, and consequently, it

is not possible that both γi > 0 for the same V1. Equally, for V1 ∈ As, c2 > 0, and hence, the multiplier

γ2 = 0.19 We also know from Proposition 1 that if c1 = 0, and therefore, that agent 2 gets all the

consumption, then agent 2 is unconstrained, and hence, µ2 = 0. Likewise, for V1 ∈Cs, γ1 = µ1 = 0.

Consumption for both agents is positive for V1 ∈ Bs, so that γ1 = γ2 = 0.

Consider the subset As. Using γ2 = µ2 = 0, we have from the first-order conditions (4a) - (4c) that:

σ
+
s (V1) = 1− γ1 =

∂ys(a1,a2)

∂a1
,(6a)

σs(V1) = 1− γ1−µ1 =
∂ys(a1,a2)

∂a1
− ∂ zs(a1,a2)

∂a2

(
dDs

1
da2

)−1

.(6b)

Hence, for V1 ∈ As, 1≥ σ+
s (V1)≥ σs(V1). From equation (6a) it follows that if σ+

s,r(V1)< 1, then γ1 >

0, and ∂ys(a1,a2)/∂a1 < 1, so that agent 1 is overinvesting. From equation (6b) it follows that agent 2

doesn’t overinvest and may underinvest. A similar set of conditions apply for V1 ∈Cs and imply 1≤
σ+

s (V1)≤ σs(V1) so that agent 1 doesn’t overinvest and if σ+
s (V1)> 1, then agent 2 overinvests. For

19 Since the multiplier is unique, the conclusion that γ2 = 0 is valid even if V1 also belongs to Bs or to Cs. The same
argument can be made for the other subsets and multipliers.
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V1 ∈ Bs, the first-order conditions show that σ+
s (V1) = 1, so there is no overinvestment. As a measure

of the extent of overinvestment let ζ s
i := max{0,−ln(∂ys(a1,a2)/∂a1)} and ζ s := max{ζ s

1 ,ζ
s
2}.

Hence, ζ s > 0 if there is overinvestment and is a measure of the distortion of the marginal product

below the efficient level.20

We now state our two-phase characterization theorem. Here, for convenience, we also treat

contracts as sequences of random variables, writing ai(t) rather than ai(st) etc.

THEOREM 2: In an optimal contract, there is a random time t̂, 0 ≤ t̂ < ∞ with probability one,

such that:

Stationary phase (t ≥ t̂): Optimal actions maximize the surplus zs(a1,a2) subject to the self-enforcing

constraints, and hence, are CSM. The optimal actions depend only on the state st and are therefore

independent of the initial conditions. There is no overinvestment: ai(t)≤ a∗i (a j(t),st) for i, j = 1,2,

i 6= j. For st ∈S∗, therefore, optimal actions and the corresponding surplus are first best: a(t) =

a∗(st) and zst (a(t)) = zst (a∗(st)). For st ∈S c
∗ , the self-enforcing constraints bind for both agents,

ci > 0 for i = 1,2, and there is underinvestment: ai(t)< a∗i (a j(t),st)≤ a∗i (st) for i, j = 1,2, i 6= j.

Backloading phase (t < t̂): Overinvestment declines during the backloading phase: in particular,

ζ (t) is weakly decreasing with ζ (t̂−1) = 0. Backloading only applies to one agent, i, whose identity

depends on the initial surplus split: this agent overinvests and has zero consumption at each t < t̂−1.

In the final period of backloading, at date t̂−1, there is no overinvestment: ai(t̂−1)≤ a∗i (st̂−1), but

a j(t̂−1) < a∗j(st̂−1) for j 6= i. Moreover, if at any two dates t and t ′ > t the same state s occurs,

then underinvestment diminishes and surplus increases: ∂ys(a(t))/∂a j ≥ ∂ys(a(t ′))/∂a j ≥ 1 for

t̂−1≥ t ′ > t and zs(a(t ′))≥ zs(a(t)) for t̂ ≥ t ′ > t.

For a given value of agent 1’s lifetime utility V1(s0), there corresponds a value σ0. From Theorem 2,

we can describe a typical path as follows. Suppose σ0 < 1 (a symmetric argument applies if σ0 > 1).

Then one of two possible scenarios applies. Either V1(s0) ∈ Bs0 or V1(s0) ∈ As0 . In the former case,

t̂ = 1 and the contract moves to the stationary phase in each state at the next period. There is no

overinvestment in this case. In the latter case, either ζ1(0) = 0 and t̂ = 1 as in the previous case,

or ζ1(0) > 0 in which case t̂ > 1 and there is a backloading phase in which c1(t) = 0 and agent 1

overinvests. Correspondingly, V1 is sufficiently low that agent 1’s self-enforcing constraint binds

and agent 2 underinvests to avoid violating agent 1’s self-enforcing constraint; by contrast V2 is high

20 In subset As, ζ s =− lnσ+
s (V1) and in subset Cs, ζ s = lnσ+

s (V1).
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enough that agent 2’s self-enforcing constraint is slack.21 The basic intuition for the backloading

result is familiar from other dynamic contracting models. The claim is that if agent 2 is unconstrained

and underinvesting, then agent 1 has zero consumption at all previous dates, her payments are

optimally backloaded into the future. The idea is that if agent 1 has positive consumption, then

backloading her consumption allows her later constraints to be relaxed, which in turn means agent 2

can increase his future investment level without violating agent 1’s constraint. Since agents are

risk neutral they do not care about the timing of consumption flows (keeping the action plans fixed)

if the expected discounted value is the same, but the backloading will permit future surplus to be

increased, leading to a Pareto-improvement. Consumption is backloaded to the maximum extent

possible, c1(t) = 0 throughout the phase, allowing maximum surplus to be achieved as quickly as

possible. Furthermore, by increasing a1(t) above a∗1(a2(t),s), with the extra output being allocated

to agent 2, additional backloading can be achieved, and for a small amount of overinvestment, the

reduction in surplus is second-order.22 Two novel results in the two-sided environment concerning

the backloading phase are the over-investment by the agent whose utility is backloaded (although

over-investment does not persist into the stationary phase), and the fact that despite the possibility

that property rights might vary radically and persistently between states, only one of the agents will

ever be subject to backloading.

That there is overinvestment in the backloading phase is perhaps surprising given the hold-up

problem and given that the literature, mentioned in the Introduction, that considers the case where

only one agent takes an action finds that there is never any overinvestment. Consider the one-sided

case with only agent 1 taking an action. If agent 2 gets sufficient of the surplus to allow a1 to be more

than a∗1 without agent 2 wanting to deviate, then the optimal contract will be stationary with a1 = a∗1.

The benefit from overinvestment is that it allows more backloading of agent 1’s utility when c1 = 0.

In this case however there is no benefit, but an efficiency cost, and backloading can only increase

21 This characterization applies so long as ζ1(t)> 0 and assuming agent 1’s self-enforcing constraint binds with a positive
multiplier. With more than one state, we cannot rule out the possibility that in some states deviation utilities are so low that
the self-enforcing constraints may not bind even when σ(t)< 1. In this latter case, from (4c) and (4a), a2(t) = a∗2(a1(t),s)
and σ+(t) = σ(t).
22 The incentive to overinvest diminishes over time (as can be seen from (6a), σ+(t) approaches 1). Equally, if the same
state recurs along the path, underinvestment diminishes as the self-enforcing constraint is relaxed. The combined effect is
that surplus zs(a(t)) increases, and reaches a maximum when σ(t) = 1.
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agent 2’s incentive to renege in the future, potentially necessitating lower (inefficient) future actions

by agent 1. Thus, there is no overinvestment.

6. CONCLUSION

In this paper, we have analyzed the dynamic properties of a relational contract between two agents

both of whom undertake a costly investment or action that yields joint benefits. We have shown that

optimal contracts exhibit different properties depending on whether agents are risk neutral or risk

averse. In the risk-neutral case, investments may be either above or below the efficient level and that

actions and the division of the surplus converges monotonically to a stationary solution at which

actions are constrained surplus maximizing (either both are first-best or both are below the first-best

level). In the risk-averse case, we also establish a convergence result but convergence may or may not

be monotonic depending on whether it is possible to sustain a first-best allocation or not. We have

demonstrated that the optimal contract converges to the pure-risk sharing results of Kocherlakota

(1996) as our hold-up problem vanishes.

In the risk-averse case there is an interesting trade-off between hold-up and risk-sharing. The

hold-up problem creates an opportunity to relax the default constraint by lowering actions. This in

turn allows more risk-sharing to be achieved without leading to default. It would be interesting to

evaluate whether the gain in risk-sharing would ever be sufficient to offset the loss in surplus created

by the original hold-up problem. This is a difficult question because without additional structure to

the model little can be said about the long run distribution of the optimal contract.

APPENDIX

Statements of lemmas for Section 2

LEMMA 1: Under Assumption 2, for i, j = 1,2, i 6= j and for each s∈S , the conditionally efficient
action, a∗i (a j,s), is single-valued, weakly increasing and continuous in a j.

LEMMA 2: Under Assumption 3, for i, j = 1,2, i 6= j and for each s ∈S , the Nash best-response,
aN

i (a j,s), is single-valued, weakly increasing and continuous in a j. Moreover, 0 < aN
i (a j,s) <

a∗i (a j,s) for all a j.

LEMMA 3: Under Assumptions 1 and 3, for i, j = 1,2, i 6= j and for each s ∈S , the deviation
utility, Ds

i (a j), is bounded below and is a continuous, increasing, strictly concave, and differentiable
function of a j.
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Statements of lemmas and technical details for Section 3

LEMMA 4: Under Assumptions1-3, the set of lifetime utilities Vs0 that correspond to dynamic
relational contracts is compact for each s0 ∈S . Hence, optimal contracts exist.

It is convenient in analyzing the recursive problem to change variables and use the deviation

utilities of the two agents instead of actions. Let d j := Ds
i (a j); by Lemma 3 dDs

i (a j)/da j > 0,

and we let gs
i (d j) := (Ds

i )
−1(d j). Abusing notation, surplus is zs(d1,d2) := zs(gs

2(d1),gs
1(d2)), with

output ys(d1,d2) defined similarly. Given the properties of Ds
i (a j) (Lemma 3), the functions gs

j(di)

are continuously differentiable, strictly increasing and strictly convex. Let D(s) := {(d1,d2) =

(Ds
2(a1),Ds

1(a2)) | (a1,a2) ∈ R2
+}. The contract {d(st),x(st)}∞

t=0 is feasible if ∑i xi(st) ≤ zst (d(st))

(total consumption does not exceed output) for every history st , and for actions and consumption to

be non-negative, it must also satisfy d(st) ∈D(st) for every history st and xi(st)+ gst
j (di(st))≥ 0 for

i, j = 1,2, i 6= j and every history st . We define d∗i (s) = Ds
j(a∗i (s)), i 6= j, d∗i (d j,s) = Ds

j(a∗i (gs
i (d j),s)),

etc.

Problem [P1] can be reformulated with d ∈D(s) replacing a≥ 0 as a choice variable, the RHS of

(3b) and (3c) being d2 and d1 respectively, ai in (3f) being gs
j(di) and the RHS of (3g) being zs(d1,d2),

with solution denoted by (ds(V1),xs(V1)).23

With the change in variables, the first-order condition (4c) becomes

µ j

1 + µ2
=

∂ zs

∂di

(
u′2(·)+

γ2

1 + µ2

)
+ gs ′

j (di)
γi

1 + µ2
i, j = 1,2 and i 6= j.(A.1)

To establish concavity of V r
2 (·) we give two alternative assumptions.

ASSUMPTION A.4: (a) zs(d):D(s)→ R is strictly concave in d and (b) any solution to [P1] has
xi > 0 for i = 1,2 and for each st .

ASSUMPTION A.5: The function zs(d)+ gs
j(di) : D(s)→ R+ is concave in d for each i, j = 1,2,

j 6= i.

23 The linear independence constraint qualification holds unless the constraints (3f) are inactive and
u′2(∂ zs/∂a1)(dgs

2(d1)/dd10 = 1. This constraint qualification can fail, but it only fails at V1 = V̄ s
1 where the slope

of the Pareto-frontier is infinite (examples where the constraint qualification fails at this point can be constructed). Thus,
apart from V1 = V̄ s

1 , the linear independence constraint qualification holds and the Lagrangian multipliers in the first-order
conditions (reported in sub-section 3.4) exist and are unique. We can also ignore points V1 = V̄ s

1 without loss of generality:
if V1(s0)< V̄ s0

1 , then we will show that V1 6= V̄ s
1 for any state s; if V1(s0) = V̄ s0

1 , then it will be possible to reformulate
the problem maximizing the utility of agent 1 for a given V2 for agent 2 and the relevant constraint qualification will be
satisfied.
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Under either Assumption A.4 or Assumption A.5, the Pareto-frontier is concave on [
¯
V s

1 ,V̄
s
1 ]

(Proposition 2(i)). Under Assumption A.4, it is easily checked that the constraint set is also convex.24

Although Assumptions A.4 and A.5 are not directly on primitives of the model (because they

are specified in terms of the deviation utility and an endogenous variable for Assumption A.4), it

is easily checked that there are natural parameterizations of the model where these assumptions

are satisfied. For example, Assumption A.4 is satisfied provided that agents are not too risk averse.

For example, consider the case where preferences exhibit constant absolute risk aversion with

coefficient α > 0, the same for both agents, and the production function is separable and given by

ys(a1,a2) = (β )−1((a1)β +(a2)β ) where β ∈ (0,1). Furthermore, suppose each agent can expropriate

a proportion θ of output in the case of default. Then a sufficient condition for the assumption to

be satisfied for θ ∈ (1/e,1/2] is if α <−eθ(1−θ)−1 logθ , and for θ ∈ (0,1/e] if α < (1−θ)−1.

Equally,suppose that agents are risk neutral with ui(x) = x, production is additive and the breakdown

consumption in each state is φi(a) = θi1 f1(a1) + θi2 f2(a2), where for notational simplicity the

dependence of θ , f etc. on s is suppressed. With this specification for φi(a), D′′j/D′j = f ′′i / f ′i , and it

can be checked that Assumption A.5 is satisfied.

LEMMA 5: Under Assumptions 1-3 and under either Assumption A.4 or Assumption A.5, ds
i (V1)

is a continuous function of V1 for each s ∈S and i = 1,2.

LEMMA 6: Under Assumptions 1-3, and for i, j = 1,2, i 6= j, for any history st , (i) if Vi(st)> d j(st),
then a j(st)≥ a∗j(ai(st),st); (ii) if ci(st)> 0, then ai(st)≤ a∗i (a j(st),st).

Statement of lemmas and proofs of theorem for Section 4

For all lemmas and proofs in this subsection, we maintain Assumption A.4. Additionally it is

assumed that agents are risk averse, that is, ui is strictly concave for i = 1,2.

LEMMA 7: For each s ∈S , a solution to [P1] has the property that zs(a1,a2) is maximized over
a ∈ R2

+ subject to V1 ≥ Ds
1(a2) and V s

2 (V1)≥ Ds
2(a1).

LEMMA 8: For each s ∈S , the surplus function zs(V1) is continuous, concave and differentiable
in V1.

LEMMA 9: For each s ∈ S , (i) dzs(V1)/dV1 > 0 (< 0) implies µs
1(V1) > 0 (µs

2(V1) > 0); (ii)
there are two critical values χ̄s

1 ∈ (
¯
V s

1 ,V̄
s
1 ] and

¯
χs

1 ∈ [
¯
V s

1 ,V̄
s
1 ), such that ds

2(V1) = V1 for all V1 ≤ χ̄s
1

24 It can also be checked that if [P1] is written with c and d as choice variables, then a sufficient condition for convexity
of the constraint set is that ys(d) is concave in d. This condition is more stringent than concavity of zs(d) and will fail in
a number of natural cases.



DYNAMIC RELATIONAL CONTRACTS 32

and ds
1(V1) = V s

2 (V1) for all V1 ≥
¯
χs

1. Moreover, µs
1(V1) = 0 for V̄ s

1 > V1 ≥ χ̄s
1 and µs

2(V1) = 0 for

¯
V s

1 < V1 ≤
¯
χs

1 (if such V1 exist). If the efficient actions can be sustained in state s, then χ̄s
1 ≤

¯
χs

1.
Otherwise, χ̄s

1 >
¯
χs

1, and surplus is maximized for a unique value of V1 ∈ (
¯
χs

1, χ̄
s
1) at which both

constraints bind.

Proof of Theorem 1:

Before proving the theorem, we prove two lemmas.

Since σ+
s (V1) depends only on the current slope σ and the current state s (recall V1 and σ are

uniquely related for a given state) the evolution of the contract can be represented as a stochastic

recursion, i.e., σ(t+1) = σ+
st

(σ−1
st

(σ)), which we write as σ(t+1) = h(σ(t),st), and where h:R+∪
{∞}×S →R+; σ(0) = σ0 is the given initial value, corresponding to the initial state s0 and agent 1’s

lifetime utility V1(s0). (This is the same function as h defined in the text, given that ρ(t) = σ(t+1).)

LEMMA 10: (i) The function h(σ ,s) is continuous and strictly increasing in σ ; (ii) for each state s,
there is a single, possibly degenerate, interval of fixed points [

¯
σ∗s , σ̄

∗
s ],

¯
σ∗s > 0, such that h(σ ,s) = σ

for any σ ∈ [
¯
σ∗s , σ̄

∗
s ]; (iii) h(σ ,s)< σ for σ > σ̄∗s and h(σ ,s)> σ for σ <

¯
σ∗s .

Proof. Let xi(V1) = ci(V1)−g j(di(V1)) be the net consumption of agent i (dropping the state super-

script) and ρ(V1) := u′2(x2(V1))/u′1(x1(V1)). Then, h(σ ,s) = ρ(σ−1
s (σ)).

We first prove part (i). From the concavity properties of [P1] under Assumption A.4, the choice

variables xi(V1) are continuous, and hence, ρ(V1) is continuous in V1. From Proposition 2(i), the

Pareto-Frontier is continuously differentiable and hence, so too is its inverse. Thus, h(σ ,s) is continu-

ous in σ .

Next, we turn to the monotonicity of h(σ ,s). First, we show that ρ(V1) is strictly increasing. Suppose,

to the contrary, that ρ(V1) ≤ ρ(Ṽ1) for some V1 > Ṽ1. It follows from ρ(V1) = −V r′
2 (V1) and the

concavity of the frontier V r
2 (V1) that V r

1 (V1)≤V r
1 (Ṽ1) for all r ∈S . Also, since Ṽ1 <V1, we have

u1(x1(Ṽ1))+δ ∑r∈S πsrV r
1 (Ṽ1)< u1(x1(V1))+δ ∑r∈S πsrV r

1 (V1). Hence, x1(Ṽ1)< x1(V1). Likewise,

since the frontier is downward sloping, V2(Ṽ1)>V2(V1) and V r
2 (V r

1 (Ṽ1))≤V r
2 (V r

1 (V1)), and therefore,

that x2(Ṽ1) > x2(V1). But then u′2(x2(Ṽ1))/u′1(x1(Ṽ1)) < u′2(x2(V1))/u′1(x1(V1)) or ρ(Ṽ1) < ρ(V1),

which is a contradiction. Thus, we can conclude that ρ(V1) is strictly increasing in V1. Since the

frontier V s
2 (V1) is strictly decreasing in V1 and σ =−V s′

2 (V1), the result is proved.

To establish parts (ii) and (iii), from Lemma 9, for s ∈S∗, surplus is at the first-best level for V1 ∈
[χ̄s

1,
¯
χs

1]. Correspondingly, there is an interval of Pareto frontier slopes [
¯
σ∗s , σ̄

∗
s ] := [−V s′

2 (χ̄s
1),−V s′

2 (
¯
χs

1)].
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For s ∈S c
∗ , the corresponding interval is degenerate at a single point [

¯
σ∗s , σ̄

∗
s ] := [−V s′

2 (χ̂s
1)] where

χ̂s
1 = argmaxV1 zs(V1). It follows from part (b) of Assumption A.4 and equation (4b) (given γi = νr

i = 0

for i = 1,2) that σ+
s (V1) is positive and finite. Thus, 0<

¯
σ∗s ≤ σ̄∗s <∞. Equation (5) therefore implies

the following: If σs(V1) ∈ [
¯
σ∗s , σ̄

∗
s ], then σ+

s (V1) = σs(V1). If σs(V1) > σ̄∗s , then dzs(V1)/dV1 < 0

(given the concavity of zs(V1) by Lemma 8) and hence, σ+
s (V1)< σs(V1). Likewise, if σs(V1)<

¯
σ∗s ,

then dzs(V1)/dV1 > 0 and hence, σ+
s (V1)> σs(V1).

Let s̄ be a state such that
¯
σ∗s̄ ≥ ¯

σ∗s and
¯
s a state such that σ̄∗

¯
s ≤ σ̄∗s for all s ∈S .

LEMMA 11: An FBA is sustainable if and only if
¯
σ∗s̄ ≤ σ̄∗

¯
s and S∗ = S .

Proof. The “if” implication follows because there would exist an initial value σ0 ∈ [
¯
σ∗s̄ , σ̄

∗
¯
s ] such that

σ0 ∈ [
¯
σ∗s , σ̄

∗
s ] for each state s. It therefore follows that starting from σ0, σ(t), and hence, the ratio of

marginal utilities, is kept constant at σ0 and since surplus is maximized for σ(t) ∈ [
¯
σ∗st
, σ̄∗st

], actions

are CSM and thus first-best by S∗ = S in each state. “Only if” follows because by Lemma 10 even

if first-best actions are sustainable in every state,
¯
σ∗s̄ > σ̄∗

¯
s would imply that whenever st = s̄ and

sτ =
¯
s (such t, τ exist with probability one given irreducibility), then either (a) σ(t) ∈ [

¯
σ∗st
, σ̄∗st

] and

σ(τ) ∈ [
¯
σ∗sτ
, σ̄∗sτ

] in which case σ(t)> σ(τ), and the risk-sharing condition fails, or (b) either or both

σ(t) /∈ [
¯
σ∗st
, σ̄∗st

] and σ(τ) /∈ [
¯
σ∗sτ
, σ̄∗sτ

], in which case surplus is not maximized at least one of the dates.

Proof of Theorem 1.

Recalling that ρ(t) = σ(t+1), an interval [
¯
σ∗s , σ̄

∗
s ] corresponds to an interval of marginal utility

ratios in state s and converge of σ(t) is equivalent to converence of ρ(t). Part (a) of the Theorem

therefore follows straightforwardly from Lemmas 10 and 11. From Lemma 11
¯
σ∗s̄ ≤ σ̄∗

¯
s . Convergence

is to
¯
σ∗s̄ if σ0 < ¯

σ∗s̄ , since σ(t) = h(σ(t−1),st−1) ≥ σ(t−1) by Lemma 10(iii) and so {σ(t)} is a

non-decreasing sequence; it is bounded above by
¯
σ∗s̄ given h continuous and increasing in σ and that

h(σ ,s) ≤ σ , all s, for σ ≥
¯
σ∗s̄ , by Lemma 10(ii) and (iii); with probability one σ(t) converges to

¯
σ∗s̄ given that h(σ , s̄)> σ for σ <

¯
σ∗s̄ and the irreducibility of [πsr] and finiteness of states implies

that state s̄ is recurrent. Likewise convergence (monotonic) is to σ̄∗
¯
s if σ0 > σ̄∗

¯
s , and σ(t) is constant

at σ0 if σ0 ∈ [
¯
σ∗s̄ , σ̄

∗
¯
s ]. If there exist multiple FBAs then

¯
σ∗s̄ < σ̄∗

¯
s , and the limit depends on σ0 and

hence on V1(s0). Since limt→∞ σ(t) ∈ [
¯
σ∗s , σ̄

∗
s ] for all s, ρ(t) convergence and by continuity the limit

actions are a∗(st), and x∗(st) is such that u′2(x∗2(s))/u′1(x∗1(s)) = limt→∞ σ(t), all s.
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For (b), if an FBA is not sustainable, then by Lemma 11 either
¯
σ∗s̄ = σ̄∗

¯
s and the CSM actions are

below first-best levels in at least one state, or
¯
σ∗s̄ > σ̄∗

¯
s . In the former case by Lemma 10, following the

argument in part (a), {σ(t)} is monotonic and converges with probability one to
¯
σ∗s̄ = σ̄∗

¯
s ∈ [

¯
σ∗s , σ̄

∗
s ]

for all s, implying that limiting actions are CSM in each state, establishing case (b)(i). Otherwise,

part (b)(ii) obtains; σ(t) ∈ [mins{h(0,s)},maxs{h(∞,s)}] for t ≥ 1. Irreducibility and finiteness of

[πsr] implies
¯
s and s̄ are recurrent, and

¯
σ∗s̄ > σ̄∗

¯
s implies that for any σ ≥ 0, either h(σ , s̄) > σ or

h(σ ,
¯
s)< σ (or both). Thus, given h is continuous in σ , weak convergence to a degenerate distribution

is impossible. Next consider the sequence of r.v.s {a(t)− ā(st)}. Assume w.l.o.g. that state
¯
s is

uniquely defined. Consider an infinite history {s0,s1, . . .} in which each state occurs infinitely often,

which implies from the properties of h established in Lemma 10 that there exists t ′ such that σ(t)≥ σ̄∗
¯
s

for t ≥ t ′; note that the set of such histories has probability one. Suppose that a(t)− ā(st)→ 0, so

that along the subsequence {st1,st2,st3 , . . .} where ti is the ith time
¯
s occurs, a(ti)→ ā(

¯
s) as i→ ∞.

Consider a t ≥ t ′ such that st = s̄. Then σ(t)≥ h(σ̄∗
¯
s , s̄)> σ̄∗

¯
s by h increasing in σ and h(σ , s̄)> σ

for σ <
¯
σ∗s̄ . If ti is the next time

¯
s occurs, σ(ti) ≥ min{h(σ̄∗

¯
s , s̄),mins 6=

¯
s σ̄∗s } > σ̄∗

¯
s . This implies

that V1(ti) is bounded above argmaxV1 z¯
s(V1), i.e., above σ−1

s (σ̄∗
¯
s ), so a(ti) is bounded away from

ā(
¯
s). Since st = s̄ infinitely often, this contradicts a(ti)→ ā(

¯
s). Next, fix any σc ∈ (σ̄∗

¯
s , ¯

σ∗s̄ ); clearly

h(σc, s̄)> σc and h(σc,¯
s)< σc. Using πss > 0 all s, there exist t ≥ 1 such that

ε1 := P(σ(t)< σc| σ0 = (max
s
{h(∞,s)}))> 0

ε2 := P(σ(t)> σc| σ0 = (min
s
{h(0,s)})> 0,

since for ε1 (respectively ε2) consider a sufficient number of consecutive occurrences of
¯
s (respectively

s̄). This implies the “splitting condition” of Bhattacharya and Majumdar (2007; Chapter 3.5, p250)

for the i.i.d. case, and the condition in Foss et al. (2016; Corollary 1) in the general Markov case.

Thus, there is a unique stationary distribution F̃ such that F(V (s0))
t converges weakly to F̃ , as t→ ∞,

for any initial condition.

Statement of lemmas and proof of theorem for Section 5

For this subsection we maintain Assumption A.5 but additionally assume that agents are risk-neutral

with ui(xi) = xi.
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LEMMA 12: For each s ∈ S , the Pareto-frontier V s
2 (·) is strictly concave on [

¯
V s

1 , ¯
V s∗

1 ) where

¯
V s∗

1 := inf{V1:V s′
2 (V1) = −1}, and on (V̄ s∗

1 ,V̄ s
1 ] where V̄ s∗

1 := sup{V1:V s′
2 (V1) = −1}. If first-best

actions are not sustainable in state s, i.e., for s ∈S c
∗ , then V s

2 (·) is strictly concave on [
¯
V s

1 ,V̄
s
1 ].

LEMMA 13: With probability one, there is a random time t̂ <∞ such that ζ (t) converges monoton-
ically to 0 with ζ (t) = 0 for all t ≥ t̂−1.

LEMMA 14: For each s ∈ S , the surplus function zs(V1) is a continuous and single peaked
function of V1. That is, for any V (1)

1 <V (2)
1 <V (3)

1 , it is not possible that zs(V (1)
1 ),zs(V (3)

1 )> zs(V (2)
1 ).

Moreover, zs(V1) is maximal when σs(V1) = 1.

Proof of Theorem 2.

Stationary phase: Define t̂ as the earliest date at which σ(t) = 1. By Lemma 13, t̂ < ∞ with

probability 1. If σ = 1 and V1 ∈ A (so that c1 = 0), then it follows from the first-order conditions

that γ1 = γ2 = µ1 = µ2 = 0, and hence that a(t) = a∗(st) or equivalently d(t) = d∗(st) (we suppress

t below for notational simplicity). A similar argument applies for σ = 1 and V1 ∈C. If σ = 1 and

V1 ∈ B (so c1 > 0 and c2 > 0), then µ1 = µ2 from (4a). Thus, either µi = 0, i = 1,2, in which case

again d = d∗ and zs(d) is maximal, or µi > 0, i = 1,2, so both self-enforcing constraints bind. In

the latter case, (∂ zs/∂d2)/(∂ zs/∂d1) = 1 = −V s′
2 (V1), from (4a) and (A.1). From the concavity

of V s
2 (V1) and zs(d), this implies that zs(d) is maximized by choice of d ∈ D(s) and V1 ∈ [

¯
V s

1 ,V̄
s
1 ]

subject to d2 ≤ V1,d1 ≤ V2(V1). Since these self-enforcing constraints must hold for any dynamic

relational contract , it follows that at σ = 1, zs(d) is maximal across all dynamic relational contracts

whether the self-enforcing constraints bind or not and optimal actions are CSM. Also in the case

where µ1 = µ2 > 0, it follows from (A.1) that di < d∗i (d j,s)≤ d∗i (s), j 6= i (the last inequality follows

because d∗i (d j,s) is non-decreasing in d j). Since ai and di are positively monotonically related

through the function gs
j and a = a∗ if and only if d = d∗, the statement in the Theorem follows.

Backloading phase: Suppose V1(s0) is such that σ0 < 1 (a symmetric argument applies if σ0 > 1).

Then σ(t)≤ σ+(t)≡ σ(t+1)≤ 1 and γ2(t) = 0.

We first establish the last part of the theorem. Consider t = t̂−1, so that σ+(t) ≡ σ(t+1) = 1.

Then σ+(t)− σ(t) > 0 and from (4a), µ1(t) > 0. (4b) implies that γ1(t) = 0. So from (A.1),

∂ zst/∂d1 ≥ 0, and thus, d1(t)≤ d∗1(d2(t),st). Likewise in (A.1), d2(t)< d∗2(d1(t),st). Together with

d1(t)≤ d∗1(d2(t),st) this implies d1(t)≤ d∗1(st) and d2(t)< d∗2(st); equivalently a1(t)≤ a∗1(st) and

a2(t)< a∗2(st).

Next, suppose σ+(t) < 1, so that t < t̂−1 and from (6a) γ1 > 0 (so c1 = 0 and V1(t) ∈ Ast ).
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Equation (6a) implies that ∂ys(a1,a2)/∂a1 < 1, so that a1(t) > a∗1(a2(t),st). Again using (A.1),

∂ zs(d1,d2)/∂d2 ≥ 0, so that d2(t)≤ d∗2(d1(t),st) and hence a2(t)≤ a∗2(a1(t),st).

To establish the monotonicity of the marginal conditions, consider dates t and t ′ with t̂ ≥ t ′ > t

such that the same state s occurs at date t and t ′. If σ+(t ′) < 1, then it follows from the mono-

tonicity of the sequence established in Lemma 13 that σ+(t) ≤ σ+(t ′) < 1. Hence, V1(t) ∈ Ast

and V1(t ′) ∈ Ast′ . It follows directly from (6a) that 1 > ∂ys(a(t ′))/∂a1 ≥ ∂ys(a(t))/∂a1. Now sup-

pose, contrary to the assertion that ∂ys(a(t ′))/∂a2 > ∂ys(a(t))/∂a2 or equivalently ∂ zs(a(t ′))/∂a2 >

∂ zs(a(t))/∂a2. From (6a) and (6b) ∂ zs(a(t))/∂a2(dDs
1/da2)−1 ≡ ∂ zs(d(t))/∂d2 = σ+(t)−σ(t)≥

0, and hence ∂ zs(a(t))/∂a2 ≥ 0 and ∂ zs(a(t ′))/∂a2 > 0. Strict concavity of zs(a) requires that

∑
2
i=1((∂ zs(a(t ′)/∂ai)−(∂ zs(a(t)/∂ai))(ai(t ′)−ai(t))< 0 for a(t) 6= a(t ′). Then, since ∂ 2zs/∂a1∂a2≥

0, it follows that a1(t) ≥ a1(t ′) and a2(t) > a2(t ′). This however provides a contradiction. To see

this, consider that σ(t ′) ≥ σ(t) and σ(t) < 1 imply, from Lemma 12, that V1(t ′) ≥ V1(t). Equally,

because ∂ zs(a(t ′))/∂a2 > 0, µ1(t ′) > 0, and hence, d2(t ′) = V1(t ′) ≥ V1(t) ≥ d2(t). This implies

a2(t ′)≥ a2(t), a contradiction. A similar argument applies if σ+(t)< σ+(t ′) = 1 and , except that

in this case we have γ1(t ′) = γ2(t ′) = 0 and thus, from (A.1), ∂ zs(a(t ′))/∂a1 ≥ 0 > ∂ zs(a(t))/∂a1

(the second inequality follows from the earlier argument because σ+(t) < 1). Finally, Lemma 14

shows that zs(V1) is continuous and single-peaked and has a maximum when σs(V1) = 1. From above,

V1(t ′)≥V1(t) when σ(t)< 1. Hence, we conclude that zs(a(t))≤ zs(a(t ′)).
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DYNAMIC RELATIONAL CONTRACTS UNDER COMPLETE INFORMATION

SUPPLEMENTARY MATERIAL

This Supplementary Material contains the statements and omitted proofs of all propositions from the paper together
with the statements and proofs of those lemmas given without proof in the Appendix to the paper.

Proofs of lemmas for Section 2

LEMMA 1: Under Assumption 2, for i, j = 1,2, i 6= j and for each s ∈S , the conditionally efficient action, a∗i (a j,s),
is single-valued, weakly increasing and continuous in a j.

Proof. By Assumption 2, holding a j fixed, ys(a1,a2) is strictly concave in ai. Thus, the conditionally efficient actions are
uniquely defined. From the continuity and differentiability assumptions, each a∗i (a j,s) is a continuous function of a j.
Complementarity in production implies that a∗i (a j,s) is weakly increasing in a j for i, j = 1,2, i 6= j.

LEMMA 2: Under Assumption 3, for i, j = 1,2, i 6= j and for each s ∈ S , the Nash best-response, aN
i (a j,s), is

single-valued, weakly increasing and continuous in a j. Moreover, 0< aN
i (a j,s)< a∗i (a j,s) for all a j.

Proof. Since the lemma applies for any given state s, the notational dependence on s can be dropped. Uniqueness of
the aN

i (a j) follows from Assumption 3 that φi(ai,a j) is strictly concave in its own action. Standard results imply these
are continuous and differentiable functions. Since, from Assumption 3, ∂φi(0,a j)/∂ai > 1, it follows that aN

i (a j)> 0.
Moreover, from the inequality in (1), 1< ∂φi(0,a j)/∂ai < ∂y(0,a j)/∂ai, so that a∗i (a j)> 0. Thus,

1 =
∂φi(aN

i (a j),a j)

∂ai
=

∂y(a∗i (a j),a j)

∂ai
>

∂φi(a∗i (a j),a j)

∂ai
,

where the first two equalities hold from the first-order conditions for aN
i (a j) and a∗i (a j) respectively, and the last inequality

follows from (1). It then follows from the strict concavity of φi in its own argument (Assumption 3), that aN
i (a j)< a∗i (a j).

LEMMA 3: Under Assumptions 1 and 3, for i, j = 1,2, i 6= j and for each s ∈S , the deviation utility, Ds
i (a j), is

bounded below and is a continuous, increasing, strictly concave, and differentiable function of a j.

Proof. Using Lemma 2 and the definition of the deviation utility establishes its continuity and differentiability. The
derivative satisfies:

Ds′
1 (a2) = u′1(φ

s
1(aN

1 (a2,s),a2)−aN
1 (a2,s))

∂φ s
1(aN

1 (a2,s),a2)

∂a2
.

Thus, Ds
1(a2) is strictly increasing in a2 by the hold-up assumption in Assumption 3. To show it is strictly concave, let

υN
1 (a2,s) := maxã1 φ s

1(ã1,a2)− ã1. Dropping the state notation, since nothing depends on it, consider two values a2 6= â2
and the convex combination aλ

2 = λa2 +(1−λ )â2 for λ ∈ (0,1). Then,

υ
N
1 (aλ

2 ) = φ1(aN
1 (aλ

2 ),aλ
2 )−aN

1 (aλ
2 )

≥ φ1(λaN
1 (a2)+(1−λ )aN

1 (â2),aλ
2 )−

(
λaN

1 (a2)+(1−λ )aN
1 (â2)

)
> λ

(
φ1(aN

1 (a2),a2)−aN
1 (a2)

)
+(1−λ )

(
φ1(aN

1 (â2), â2)−aN
1 (â2)

)
= λυ

N
1 (a2)+(1−λ )υ

N
1 (â2),

where the first inequality follows from optimality and the second strict inequality from Assumption 3 that φ1(a) is strictly
concave. Since D1(a2) = u1(υN

1 (a2))+ δ ∑r∈S πsrDr
1(aNE

2 (r)) and u1 is itself concave, it follows that D1(a2) is strictly
concave. From Assumption 3, υN

1 (a2) ≥ υN
1 (0) > 0. Therefore, from Assumption 1, u1(υN

1 (a2)) > −∞. Likewise,
Dr

1(aNE
2 (r))>−∞, and hence, D1(a2) is bounded below too. The same arguments apply with agent indices reversed.
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Proofs of lemmas and propositions for Section 3

LEMMA 4: Under Assumptions1-3, the set of lifetime utilities Vs0 that correspond to dynamic relational contracts is
compact for each s0 ∈S . Hence, optimal contracts exist.

Proof. By Lemma 3, Ds
i (a j) is bounded below and by Assumption 2, zs(a) is bounded above for each s ∈ S .

Together these facts imply that the future utility for agent i is bounded above. Therefore, in order to satisfy (2), it
follows that ui(xi(st)), and hence xi(st), is above some bound, say x̂i, at each st . By Assumption 2, the set of actions
A (s) = {(a1,a2) ∈ R2

+ | zs(a)≥ x̂1 + x̂2} is compact. Therefore, the action-consumption pairs after any history st can
be restricted to a compact subset, say z(st) ⊂ R4. Hence, the product space ∏st z(st) is sequentially compact in the
product topology because it is a countable product of compact spaces. Associated with any dynamic relational contract
(and for notational simplicity, ignoring the dependence on the initial state) is a pair of discounted utilities (V1,V2). Let Γ

denote the set of dynamic relational contracts and V the set of associated discounted utilities. Consider any convergent
sequence in V and the associated sequence of dynamic relational contracts in Γ. By sequential compactness, the latter has
a convergent sub-sequence that converges pointwise to some limiting contract. By the dominated convergence theorem,
the limit of the sequence of utilities at each st along the subsequence must satisfy the self-enforcing constraints (2)
because utilities are continuous functions of contracts in this topology when δ < 1, and because the constraints are
weak inequalities. Thus, the limit contract is a dynamic relational contract , and the limiting sequence of the associated
lifetime utilities has a limit point that corresponds to the limit dynamic relational contract . It follows that V is closed and
bounded, and hence, a compact subset of R2. The existence of optimal contracts then follows by maximizing weighted
sums (with non-negative weights) of utilities over this set.

PROPOSITION 1: In any optimal contract (i) actions are never below the Nash reaction functions, ai(st)≥ aN
i (a j(st),st),

and a(st) ≥ aNE(st) > 0; (ii) an agent who is allocated all current output and who is not overinvesting, ai(st) ≤
a∗i (a j(st),st), is unconstrained.

Proof. We drop the state notation because nothing depends on it. (i) We first note that aNE > 0 because, from Lemma 2,
aN

i (a j) > 0 for all a j. The proof proceeds in two parts. The first is to show that one cannot simultaneously have
a2 < aN

2 (a1) and a1 ≥ aN
1 (a2) or vice-versa. Thus, the actions must be either above both reaction functions or below

both reaction functions. The next part shows that (a1,a2)≥ (aNE
1 ,aNE

2 ). Since the reaction functions are non-decreasing
from Lemma 2, this rules out that both actions are below the reaction functions. Step 1: Suppose that at some date t,
a2 < aN

2 (a1) and a1 ≥ aN
1 (a2). Then

∂φ2(a1,a2)

∂a2
>

∂φ2(a1,aN
2 (a1))

∂a2
= 1(S.1)

since φ2 is strictly concave, and

∂φ1(a1,a2)

∂a2
≥

∂φ1(aN
1 (a2),a2)

∂a2
,(S.2)

by complementarity, given a1 ≥ aN
1 (a2). Consider a small increase in a2 of ∆a2 > 0. The consequent increase in output is

approximately (∂y(a1,a2)/∂a2)∆a2. If the self-enforcing constraint of agent 1 is not binding, this increase in output can
be given to agent 2 without violating any constraints. Suppose then, that agent 1’s self-enforcing constraint is binding.
Change the contract by increasing agent 1’s consumption at date t, so that her utility increases by the same amount as
the increase in her deviation utility. From the envelope theorem, the increase in the deviation utility is, to a first-order
approximation, D′1(a2)∆a2 = u′1(φ1(aN

1 (a2),a2)−aN
1 (a2))(∂φ1(aN

1 (a2),a2)/∂a2)∆a2. The remainder of the extra output
(we show this is positive below because agent 2 will be better off) is given to agent 2. Keep the future unchanged. We
now show that these changes meet the constraints and lead to a Pareto-improvement, contrary to the assumed optimality
of the contract. Let wi denote the current utility of agent i. First, agent 1 is no worse off (in fact better off, given the
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hold-up assumption) and by construction her self-enforcing constraint is satisfied. For agent 2, the change in current
utility is, to a first-order approximation,

∆w2 ' u′2(c2−a2)

(
∂y(a1,a2)

∂a2
−

u′1(φ1(aN
1 (a2),a2)−aN

1 (a2))

u′1(c1−a1)

∂φ1(aN
1 (a2),a2)

∂a2
−1
)

∆a2.(S.3)

Since agent 1’s self-enforcing constraint is binding, V1 = D1(a2) and therefore u1(c1−a1)+δ ∑r∈S πsrV r
1 = u1(φ1(aN

1 (a2),a2)−
aN

1 (a2))+ δ ∑r∈S πsrDr
1(aNE

2 (r)). Also, since V r
1 ≥ Dr

1(aNE
2 (r)), u1(φ1(aN

1 (a2),a2)−aN
1 (a2))≥ u1(c1−a1). Therefore,

it follows that u′1(φ1(aN
1 (a2),a2)−aN

1 (a2))≤ u′1(c1−a1). Using this, the fact that ∂y(a1,a2)/∂a2 ≥ ∑
2
i ∂φi(a1,a2)/∂a2,

from Assumption 3, the inequality in (S.2) above, gives

∂y(a1,a2)

∂a2
−

u′1(φ1(aN
1 (a2),a2)−aN

1 (a2))

u′1(c1−a1)

∂φ1(aN
1 (a2),a2)

∂a2
≥ ∂y(a1,a2)

∂a2
− ∂φ1(a1,a2)

∂a2
≥ ∂φ2(a1,a2)

∂a2
.

Then using (S.1), the bracketed term in (S.3) satisfies:(
∂y(a1,a2)

∂a2
−

u′1(φ1(aN
1 (a2),a2)−aN

1 (a2))

u′1(c1−a1)

∂φ1(aN
1 (a2),a2)

∂a2
−1
)
> 0.

Thus, for ∆a2 small enough, ∆w2 > 0. Agent 2’s constraint is satisfied because a1, and hence also D2(a1) are unchanged,
while his utility has risen, so a Pareto-improvement has been demonstrated. A symmetric argument applies when
a1 < aN

1 (a2) and a2 ≥ aN
2 (a1).

Step 2: Suppose that (a1,a2)≤ (aNE
1 ,aNE

2 ) with strict inequality for at least one agent, say agent 2. Consider replacing
the actions with the Nash equilibrium actions aNE

i , so that output rises from y(a1,a2) to y(aNE
1 ,aNE

2 ). Let agent 1 have
consumption of φ1(aNE

1 ,aNE
2 ) and give the remainder of the output to agent 2 (we shall show that utility does not fall, so

consumption does not fall, and thus, the change is feasible). The change in per-period utilities are

∆w1 = u1(φ1(aNE
1 ,aNE

2 )−aNE
1 )−u1(c1−a1)

∆w2 = u2(y(aNE
1 ,aNE

2 )−φ1(aNE
1 ,aNE

2 )−aNE
2 )−u2(c2−a2)≥ u2(φ2(aNE

1 ,aNE
2 )−aNE

2 )−u2(c2−a2).
(S.4)

By the definition of (aNE
1 ,aNE

2 ), Di(aNE
j ) = ui(φi(aNE

1 ,aNE
2 )−aNE

i )+ δ ∑r∈S πsrDi(aNE
j,r ,r) for i = 1,2, i 6= j. Hence, for

agent 1

D1(aNE
2 )−D1(a2) = u1(φ1(aNE

1 ,aNE
2 )−aNE

1 )−u1(φ1(aN
1 (a2),a2))−aN

1 (a2))),(S.5)

with a similar expression for agent 2. Using the expression for ∆w1 in (S.4) and (S.5) gives,

∆w1− (D1(aNE
2 )−D1(a2)) =

(
u1(φ1(aNE

1 ,aNE
2 )−aNE

1 )−u1(c1−a1)
)
−(

u1(φ1(aNE
1 ,aNE

2 )−aNE
1 )−u1(φ1(aN

1 (a2),a2))−aN
1 (a2)))

)
= u1(φ1(aN

1 (a2),a2))−aN
1 (a2))−u1(c1−a1).

(S.6)

We can assume that V1 = D1(a2), otherwise it would be possible to raise a2 and reallocate output in a Pareto-improving
way. Thus, by the same arguments as in Step 1, u1(φ1(aN

1 (a2),a2)−aN
1 (a2))≥ u1(c1−a1), so that ∆w1− (D1(aNE

2 )−
D1(a2))≥ 0: the change does not violate the self-enforcing constraint of agent 1. Moreover, since aNE

2 > a2 by assumption,
and since Lemma 3 shows that D1(a2) is strictly increasing, it follows from (S.6) that ∆w1 > 0. Now consider agent 2. The
new consumption of agent 2 is equal to y(aNE

1 ,aNE
2 )−φ1(aNE

1 ,aNE
2 ), which by Assumption 3 is at least φ2(aNE

1 ,aNE
2 ). Thus,

the change in current utility of agent 2 satisfies ∆w2 = u2(φ2(aNE
1 ,aNE

2 )−aNE
1 )−u2(c2−a2) and the same argument as

above can be applied to show ∆w2− (D2(aNE
1 )−D2(a1))≥ 0. Thus, we obtain a contradiction to the assumed optimality

of the original contract.
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(ii) Suppose c1 = y(a1,a2). From part (i), optimal actions satisfy a1 ≥ aN
1 (a2). Thus, aN

1 (a2) ≤ a1 ≤ a∗1(a2) and
y(a1,a2)− a1 ≥ y(aN

1 (a2),a2)− aN
1 (a2). Equally, by Assumption 3, aN

1 (a2) > 0, so that y(aN
1 (a2),a2)− aN

1 (a2) >

φ1(aN
1 (a2),a2)− aN

1 (a2). Thus, u1(y(a1,a2)− a1) > uN
1 (a2). Write V r

1 for next-period continuation utility in state r.
Then,

D1(a2) := uN
1 (a2)+ δ ∑

r
πsrDr

1(aNE
2 (r))

< u1(y(a1,a2)−a1)+ δ ∑
r

πsrV r
1 ,

where the inequality follows from u1(y(a1,a2)−a1)> uN
1 (a2) and V r

1 ≥ Dr
1(aNE

2 (r)).

PROPOSITION 2: For each s ∈S and under Assumptions 1-3 (i) under either Assumption A.4 or Assumption A.5,
V s

2 (V1) is a continuous and concave function of V1 defined on a non-degenerate closed interval [
¯
V s

1 ,V̄
s
1 ],and is continuously

differentiable on its interior. Moreover,

V s(+)
2 (

¯
V1) = 0 and V s(−)

2 (V̄1) =−∞,

where V s(+)
2 denotes the right and V s(−)

2 the left derivative. (ii) Under Assumption A.4, V s
2 (V1) is strictly concave if ui is

strictly concave, i = 1,2, or over any interval such that as(V1) varies with V1; under Assumption A.5, V s
2 (V1) is strictly

concave over any interval such that as(V1) varies with V1.

Proof. We first note that Assumption A.5 implies that zs(d) is strictly concave. Since zs(d) + gs
j(di) is concave,

zs(dλ )− (λ zs(d) + (1−λ )zs(d̂) ≥ (λgs
j(di) + (1−λ )gs

j(d̂i))− gs
j(dλ

i ) for pairs d and d̂ and dλ = λd + (1−λ )d̂ and
λ ∈ [0,1]. Since gs

j(di) is strictly convex, (λgs
j(di)+(1−λ )gs

j(d̂i))−gs
j(dλ

i )> 0 for λ ∈ (0,1) and di 6= d̂i and i, j = 1,2,
i 6= j. Hence, for d 6= d̂ and λ ∈ (0,1), we have zs(dλ )− (λ zs(d)+(1−λ )zs(d̂)> 0, so that zs(d) is strictly concave.
First consider Assumption A.5. Let (x(st),d(st))∞

t=0 and (x̂(st), d̂(st))∞
t=0 be two optimal contracts with utilities of

(V1,V s
2 (V1)) and (V̂1,V s

2 (V̂1)) respectively, with V1 6= V̂1 (if there is a unique optimal contract, i.e., a unique Pareto-
efficient allocation, then the lemma is trivial). Take a convex combination of the two contract actions, such that
dλ (st) = λd(st)+(1−λ )d̂(st) is chosen each period, 0< λ < 1. Define, for i, j = 1,2, i 6= j,

hst
j (st) := gst

j (dλ
i (st))−

(
λgst

j (di(st))+(1−λ )gst
j (d̂i(st)

)
.

Since gs
j is convex, hs

j ≤ 0. We want to show that it is feasible to choose x̃i(st) such that c̃i(st)≡ x̃i(st)+ gst
j (dλ

i (st))≥ 0,
x̃1(st)+ x̃2(st)≤ zs(dλ (st)), equivalently c̃1(st)+ c̃2(st)≤ ys(dλ (st)), and x̃i(st)≥ λxi(st)+(1−λ )x̂i(st), equivalently
c̃i(st)≥ (λci(st) + (1−λ )ĉi(st)) + h j(st), i = 1,2 (where ci and ĉi are the consumptions corresponding to the original
contracts). For notational convenience, we drop the dependence on the state and history for the moment. Let c̃1 =

max{λc1 + (1−λ )ĉ1 + h2,0} and c̃2 = y(dλ )− c̃1. There are two cases to consider: case I, where λc1 + (1−λ )ĉ1 +

h2 < 0, and case II, where λc1 +(1−λ )ĉ1 + h2 ≥ 0.
Case I. In this case, c̃1 = 0 and c̃2 = y(dλ ). Then, by assumption, c̃1 > λc1 +(1−λ )ĉ1 + h2. Furthermore, c̃2 > 0 since
actions, and hence, output is positive. Next c̃2−(λc2 +(1−λ )ĉ2 +h1)≥ y(dλ )−(λy(d)+(1−λ )y(d̂)+h1)≥ 0, where
the first inequality follows because c2 ≤ y(d) and ĉ2 ≤ y(d̂) and the second inequality follows from Assumption A.5 that
z(d)+ g2(d1) (≡ y(d)−g1(d2)) is concave in d.
Case II. In this case, c̃1 = λc1 +(1−λ )ĉ1 + h2 and c̃2 = y(dλ )− c̃1. By assumption, c̃1 ≥ 0. Furthermore, c̃2 = y(dλ )−
c̃1 = y(dλ )− (λc1 + (1− λ )ĉ1 + h2) ≥ y(dλ )− (λy(d) + (1− λ )y(d̂))− h2 ≥ 0, where the final inequality follows
because y(d)−g2(d1) (≡ z(d)+ g1(d2)) is concave in d. Likewise, c̃2− (λc2 +(1−λ )ĉ2)−h1 = y(dλ )− (λ (c1 + c2)+

(1−λ )(ĉ1 + ĉ2))−h2−h1 ≥ z(dλ )− (λ z(d)+(1−λ )z(d̂)≥ 0, where the first inequality follows from c1 + c2 ≤ y(d)

and ĉ1 + ĉ2 ≤ y(d̂). The final inequality follows from the concavity of z(d), and is a strict inequality if d 6= d̂ because z is
strictly concave.
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Now consider the contract (x̃(st),dλ (st))∞
t=0. We have, by the forgoing and by the concavity of ui, that:

ui(c̃i−g j(dλ
i ))≥ ui(λ (ci−g j(di))+(1−λ )(ĉi−g j(d̂i)))

≥ λui(ci−g j(di))+(1−λ )ui(ĉi−g j(d̂i)),
(S.7)

where for one of the agents the first inequality is strict if d 6= d̂ (agent 1 in case I, agent 2 in case II). Thus, the contract
(x̃(st),dλ (st))∞

t=0 offers at least as much utility in each date-event pair as the average contract and is feasible and self-
enforcing. By construction, utilities from the new contract are at least λ (V1,V s

2 (V1))+(1−λ )(V̂1,V s
2 (V̂1)). Considering

cases where d 6= d̂, the first claim of part (ii) follows by straightforward arguments.
Under Assumption A.4, it is only necessary to consider case II. Applying the same argument using the concavity of z(d)

shows that (x̃(st),dλ (st))∞
t=0 offers at least as much utility in each date-event pair as the average contract and is feasible

and self-enforcing. To establish the second claim of part (ii), for d 6= d̂ we again get a strict inequality because z is strictly
concave; if ui is strictly concave, then the second inequality in (S.7) is strict at some date, and hence, strict concavity of
V2 follows.
Using standard arguments, it then follows that V s

2 (·) is concave on an open interval (
¯
V1,V̄1) where

¯
V1 and V̄1 are the

respective infimum and supremum of the projection of the Pareto frontier onto agent 1’s utilities. To show that V s
2 (·)

is in fact concave, continuous and defined on [
¯
V1,V̄1], consider a sequence {V p

1 }∞
p=1 ∈ (

¯
V1,V̄1), such that V p

1 ↓ ¯
V1 (that

is, from above). Since all variables belong to compact spaces, assume w.l.o.g. that a corresponding subsequence of
optimal contracts {(xp

t ,d
p
t )t≥0)}∞

p=1 is convergent. Since all inequality constraints are weak, it is easily seen that this
limit contract is self-enforcing. Therefore, an optimal contract must offer at least the utility to agent 2 from the limit
contract, V2(

¯
V1) ≥ limp→∞ V2(V p

1 ). Equally, it cannot offer more because this would violate concavity of the value
function (creating a discontinuity at

¯
V1). The fact that V2(V1) is continuous and decreasing on (

¯
V1,V̄1) then implies that

V2(
¯
V1)>V2(V1) for all V1 ∈ (

¯
V1,V̄1), and hence, that this point at

¯
V1 is constrained Pareto efficient. A similar argument

applies at V̄1.

We now establish differentiability. Assume
¯
V s

1 < V̄ s
1 (this is established later). Fix V1 = V o

1 ∈ (
¯
V s

1 ,V̄
s
1 ) and let the

superscript “o” represent optimal values of other variables (these need not be unique). Since nothing depends on it, the
notational dependence on the state s is dropped. Recall that by Proposition 1, output is positive. Hence there are three
possibilities: (A) co

1 = 0 and co
2 > 0, (B) co

1 > 0 and co
2 > 0, or (C) co

1 > 0 and co
2 = 0 (only possibility B is relevant under

Assumption A.4). First, consider case (B) and define ϒo
1 := V o

1 −do
2 and ϒo

2 := V o
2 −do

1 where ϒo
1,ϒ

o
2 ≥ 0 in any dynamic

relational contract . Also V o
2 = V2(V o

1 ). Likewise, we have the recursive equations u1(co
1−g2(do

1))+δ ∑r∈S πsrV ro
1 = V 0

1
and u2(z(do

1 ,d
o
2)+g2(do

1)−c0
1)+δ ∑r∈S πsrV ro

2 = V o
2 . Consider the following equations where the future values, but not

(necessarily) the current values, are at their optimal levels:

V1−u1(c1−g2(d1)) = δ ∑
r∈S

πsrV ro
1 ,

V2−u2(z(d1,d2)+ g2(d1)− c1)) = δ ∑
r∈S

πsrV ro
2 ,

V1−d2 = ϒ
o
1,

V2−d1 = ϒ
o
2.

Since the functions ui, gi and z are continuous and differentiable, the implicit function theorem asserts the existence
of continuous and differentiable functions c̃1(V1), d̃1(V1), d̃2(V1) and Ṽ2(V1) in an open interval around V o

1 such that
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c̃1(V o
1 ) = co

1 etc. and for each V1 in the interval

V1−u1(c̃1(V1)−g2(d̃1(V1))) = δ ∑
r∈S

πsrV ro
1 ,

Ṽ2(V1)−u2(z(d̃1(V1), d̃2(V1))+ g2(d̃1(V1))− c̃1(V1)) = δ ∑
r∈S

πsrV ro
2 ,

V1− d̃2(V1) = ϒ
o
1,

Ṽ2(V1)− d̃1(V1) = ϒ
o
2,

provided the determinant of the Jacobian matrix, J, of this system (all functions evaluated at the optimum V o
1 ) satisfies:

|J|= u′1

(
1−u′2

∂ z
∂a1

g′2

)
6= 0.(S.8)

Given that u′1 > 0, the condition is equivalent to the linear independence constraint qualification, which holds unless
V1 = V̄ s

1 . We have Ṽ2(V o
1 ) = V2(V o

1 ) and Ṽ2(V1)≤V2(V1) because V2(V1) is an optimal value function. Since V2(V1) is
concave and given Ṽ2(V1) is differentiable, and Ṽ2(V o

1 ) = V2(V o
1 ) with Ṽ2(V1) ≤ V2(V1), Lemma 1 of Benveniste and

Scheinkman (1979) can be applied, and therefore, it follows that V2(V1) is differentiable at V o
1 .

Next, consider case (A): co
1 = 0 and co

2 > 0. We can proceed as before except that by Proposition 1(ii), agent 2’s
self-enforcing constraint is not binding. Thus, V2 > d1, and this constraint can be ignored. Instead, hold c1 = 0 fixed.
Therefore, consider small changes in the current contract (that is, varying a1,a2,V1,V2), which satisfy:

V1−u1(−gs
2(d1)) = δ ∑

r∈S
πsrV ro

1 ,

V2−u2(z(d1,d2)+ g2(d1))) = δ ∑
r∈S

πsrV ro
2 ,

V1−d2 = ϒ
o
1.

Here the implicit function theorem can be applied directly because the determinant of the Jacobian of the system is
u′1g′2 > 0. Again applying Lemma 1 of Benveniste and Scheinkman (1979) shows that the function V2(V1) is differentiable
at V1. A similar argument applies to case (C). In particular, it can be shown that V−1

2 (V2) is differentiable at V2 = V2(V1).
Since V−1

2 (·) is strictly decreasing, V2(·) is differentiable at V1. Since V2(V1) is differentiable and is a concave function
on [

¯
V s

1 ,V̄
s
1 ], it follows as a corollary to Theorem 24.1 in Rockafellar (1997) that the function has a continuous derivative.

Next we confirm that
¯
V s

1 < V̄ s
1 . Suppose to the contrary that the frontier consists of a single point. We establish a

contradiction. For cases (A), (B) and (C) let |J| denote the determinant of the Jacobian of the systems described above
and let |J′| be the corresponding determinant of the Jacobian with the agent indices swapped. If either |J| 6= 0 or |J′| 6= 0,
then the existence of the differentiable subfunction Ṽ2(V1) establishes that there are feasible points which offer one of
the agents a higher utility, contradicting the hypothesis. Thus, it can only be that case (B) applies and that |J|= |J′|= 0.
Rewriting the term in brackets in (S.8), this implies

(1−u′j((∂ z)/(∂ai))g′j) = (u′j/D′j)((∂φ j/∂ai)+ 1− (∂y/∂ai)) = 0,(S.9)

i 6= j, i, j = 1,2. Since (u′j/D′j) > 0, this implies (∂y/∂ai)−1− (∂φ j/∂ai) = 0. Consider a small increase in a1 of ∆.
Suppose that of the increase in output, agent 2 receives the increase in her default, approximately ∆∂φ2/∂a1, while
the remainder is allocated to agent 1. Given equation (S.9), the remainder is approximately ∆∂y/∂a1−∆∂φ2/∂a1 = ∆.
Since ∆ is agent 1’s extra effort cost, she suffers no more than a second-order loss, while agent 2 has a first-order gain in
utility of approximately u′2∆∂φ2/∂a1. When state s recurs, make a corresponding increase in a2, and thereafter continue
alternating between the two agents. Since δ > 0, for ∆ small enough, there is a first-order gain in discounted utilities
for both agents, and the first-order increase in deviation utilities is always more than matched by an increase in the
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constructed contract utilities. Thus, an allocation which offers strictly more than the initial equilibrium can be supported
as an equilibrium, again giving a contradiction. We now show that

V (+)
2 (

¯
V1) = 0 and V (−)

2 (V̄1) =−∞.

Suppose to the contrary of the assertion that V (+)
2 (

¯
V1) < 0 (it cannot be positive by definition of it being a Pareto

frontier). By a previous argument, for every V1 ∈ [
¯
V1,V̄1] at which the implicit function theorem can be applied, there

is a continuously differentiable function Ṽ2(V1) which describes utilities to agent 2 from dynamic relational contracts
which yield V1 to agent 1. Moreover, the theorem together with the optimality of the function V2(V1) imply that there
is an open neighborhood of V1 such that V2(V1 + ε) ≥ Ṽ2(V1 + ε) for all ε ≥ 0. At V1 =

¯
V1 this therefore implies

Ṽ ′2(
¯
V1) ≤ V (+)

2 (
¯
V1) < 0. The implicit function theorem (which applies if Ṽ ′2(V1) is finite) then implies that there is an

ε > 0 with Ṽ2(V1− ε) > Ṽ2(
¯
V1) = V2(

¯
V1) corresponding to a dynamic relational contract . Consequently, the Pareto

frontier must extend below
¯
V1, which is a contradiction. A similar argument applies at V̄1.

LEMMA 5: Under Assumptions 1-3 and under either Assumption A.4 or Assumption A.5, ds
i (V1) is a continuous

function of V1 for each s ∈S and i = 1,2.

Proof. Again we suppress the notational dependence on the state s. To see the uniqueness of d as a function of V1,
suppose to the contrary that (x,d,(V r

1 )r∈S ) and (x̂, d̂,(V̂ r
1 )r∈S ) are both optimal at V1 with d 6= d̂. Consider the convex

combinations dλ = λd +(1−λ )d̂ for some λ ∈ (0,1) and define c̃ and cases I and II as in the proof of Proposition 2. In
case I, agent 1 is strictly better off while agent 2 is no worse off; in case II, as d 6= d̂, agent 2 is strictly better off while
agent 1 is no worse off. As shown in the proof of Proposition 2, this change is feasible, and delivers a payoff profile that
is Pareto-superior to that at V1, contrary to the optimality of the two original contracts.
To establish continuity of di(V1), let {V p

1 }∞
p=1 be such that V p

1 →V ∗1 . Since all variables belong to compact spaces, assume
w.l.o.g. that the corresponding sequence of optimal choices {(xp,dp,(V rp

1 )r∈S )}∞
p=1 is convergent to (x̄, d̄,(V̄ r

1 )r∈S ), and
let (x∗,d∗,(V r∗

1 )r∈S ) be the optimal choices at V ∗1 . Assume that d̄ 6= d∗; a contradiction will be established. By continuity
of all the constraints, (c̄, d̄,(V̄ r

1 )r∈S ) is feasible for V ∗1 , and since V s
2 (V1) is continuous (from Proposition 2), this choice

attains the maximum, contradicting the uniqueness of d as a function of V s
1 .

PROPOSITION 3: V s
2 (V s

1 ), V s
1 ∈ [

¯
V s

1 ,V̄
s
1 ], is a solution to the following program

[P1] V s
2 (V1) = max

a≥0,x≥
¯
x,(V r

1∈R)r∈S

{
u2(x2)+ δ ∑r∈S πsrV r

2 (V r
1 )
}

subject to

u1(x1)+ δ ∑r∈S πsrV r
1 ≥V1: λ(S.10a)

V1 ≥ Ds
1 (a2) : µ1(S.10b)

u2(x2)+ δ ∑r∈S πsrV r
2 (V r

1 )≥ Ds
2 (a1) : µ2(S.10c)

V r
1 ≥ ¯

V r
1 : δπsrν

r
1(S.10d)

V r
1 ≤ V̄ r

1 : δπsrν
r
2(S.10e)

xi + ai ≥ 0 : i, j = 1,2, i 6= j γi(S.10f)

x1 + x2 ≤ zs(a1,a2): ψ(S.10g)

Proof. Arguments follow standard lines. Briefly: take an optimal contract corresponding to V1 ∈ [
¯
V s

1 ,V̄
s
1 ] in state s

(from Lemma 4 such a contract exists) with its initial values for a, x, and (V r
i )r∈S , i = 1,2, being continuation payoffs.

First, (S.10d)− (S.10e) must hold, since, otherwise a Pareto-dominating continuation is feasible, which also relaxes all
constraints and increases current payoffs. By definition of a dynamic relational contract, (S.10b)− (S.10c) must hold (the
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latter since V r
2 ≤V r

2 (V r
1 ), by definition of V r

2 (·), so, if it were violated, agent 2 would be better off deviating) and also
(S.10f)− (S.10g) must be satisfied for feasibility. Conversely, a, x, and (V r

1 )r∈S satisfying (S.10a)− (S.10g) correspond
to a dynamic relational contract with (a,x) in the initial period, and the optimal contract corresponding to each V r

1 as the
continuation contract in state r. If the maximum in [P1] is not attained by an optimal contract, then replacing it by a set of
choices with a higher value of the maximand will lead to a Pareto-superior dynamic relational contract, contradicting
optimality.

LEMMA 6: Under Assumptions 1-3, and for i, j = 1,2, i 6= j, for any history st , (i) if Vi(st) > d j(st), then a j(st)≥
a∗j(ai(st),st); (ii) if ci(st)> 0, then ai(st)≤ a∗i (a j(st),st).

Proof. Again we drop the state notation for the proof. Parts (i) and (ii) follow directly from the first-order condition (4c).
(i) If Vi > d j, then µi = 0 and therefore, from (4c), ∂ zs(a)/∂a j ≤ 0. Thus, a j ≥ a∗j(ai,s), that is, there is no underinvestment.
(ii) Equally, if ci > 0, then γi = 0 and therefore, from (4c), ∂ zs(a)/∂ai ≥ 0. Thus, ai ≤ a∗i (a j,s), that is, there is no
overinvestment.

Computation of the illustrative example from Section 1

In this section we show how to compute the solution to the illustrative example presented in the Introduction of the
paper. The example has an additive production technology

y(a1,a2) = f1(a1)+ f2(a2) = 2(
√

a1 +
√

a2) .

Preferences are common and exhibit constant absolute risk aversion with parameter 1/2:

ui(x) = 2
(

1− e−
1
2 x
)
.

The conditionally efficient actions are independent of the other agent’s action and given by a∗1 = a∗2 = 1 and the first-best
surplus z(a∗) = 2. The breakdown payoffs are of the form φi(a1,a2) = θi1 f1(a1)+ θi2 f2(a2) where the parameters are
θ11 = θ22 = 0 and θ12 = θ21 = 1. Given the additive technology, the Nash best-response functions are dominant strategies,
and hence, aN

i = aNE
i = 0.25 With these assumptions, the deviation payoffs are:

Di(a j) = ui
(
2
√

a j
)

= 2
(
1− e−

√a j
)
.

At the first-best, the net consumption of both agents is x∗i = 1. This is sustainable provided

ui(1)

(1−δ )
=

2(1− e−
1
2 )

(1−δ )
≥ Di(1) = 2(1− e−1),

or δ ≥ (1 +
√

e)−1. Here we consider the knife-edge case δ = (1 +
√

e)−1, in which case the first best is just sustainable
for an equal split of the surplus.

Since the example is symmetric, we first compute the solution for low values of V1 < u1(2) and the case for higher
values of V1 is completely symmetric. Consider a low value of V1 ≥ ¯

V1 where agent 1 is constrained, that is V1 < u1(2) =

2(1 + e−1). By construction, agent 2 is unconstrained and the optimal action for agent 1 is the conditionally efficient
action. The action of agent 1, and hence surplus is determined by the binding constraint V1 = D1(a2). In particular, for

25 Strictly, this violates our condition that Nash actions are strictly positive. However, the importance of the assumption
of positive Nash equilibrium actions was to rule out trivial contracts. Trivial contracts with zero actions are not optimal in
this example for the parameter values chosen, and hence, the substance of the theorems does apply.
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σ+(V1, σ) = σ
V +(V1, σ) = V

V 1 u1(2)

1

V1

σ

FIGURE S.1: Phase Diagram

V1 ∈ [
¯
V1,u1(2)]

a1(V1) = 1,

a2(V1) =
( 1

2 u−1
1 (V1)

)2
=
(

log
(

1− V1
2

))2
,

z(V1) = 1 + u−1(V1)−
( 1

2 u−1
1 (V1)

)2
= 1−2log

(
1− V1

2

)
−
(

log
(

1− V1
2

))2
,

z′(V1) = u−1′
1 (V1)

(
1 + u−1(V1)

)
=
(

1 + log
(

1− V1
2

))(
1− V1

2

)−1
.

It is easily checked that the surplus function z(V1) is increasing and concave in this region with z(0) = z′(0) = 1 and
z(V1) = 2 and z′(V1) = 0 when V1 = u(2). It follows, (from equation (5) in the paper), that σ+(V1)≥ σ(V1) with equality
only holding when V1 = u(2) where, because agents are symmetric, σ+(V1) = σ(V1) = 1.

If the Pareto frontier were known, in particular, if σ(V1) were known, then, for a given V1, the net consumption of each
agent can be determined from equation (5) together with the first-order condition σ+(V1) = u′2/u′1 and that the sum of net
consumptions equals the current surplus. Since the Pareto-frontier is not known, equation (5) can be used to determine
the net consumption of agent 1, say, as a function of V1 and σ . The equation for net consumption x1 is determined by

ex1e−
1
2 z(V1)−σ = e

1
2 x1e−

1
2 z(V1)z′(V1),

which can be solved explicitly to give

x1(V1,σ) = log
(

1
2

(
(z′(V1))2 + 2σe

1
2 z(V1) + z′(V1)

√
(z′(V1))2 + 4σe

1
2 z(V1)

))
.

For the given value of V1 and σ , the promise-keeping constraint then determines V +
1 (V1,σ) = (1/δ )(V1−u(x1(V1,σ))).

It can be checked that x1(V1,σ) is increasing in σ (so that V +
1 (V1,σ) is decreasing in σ ) and that V +

1 (V1,σ)−V1
is increasing in V1. Hence, the locus of values where V +

1 (V1,σ) = V1 is upward sloping and furthermore, it passes
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through (0,0) and (u(2),1). V +
1 (V,σ) > V1 below this locus and V +

1 (V1,σ) < V1 above it. The locus of points where
σ+(V1,σ) = σ occurs when z′(V1) = 0, that is for V1 = u1(2). The phase diagram for the change in V1 and σ is illustrated
in Figure S.1. The optimal solution where agent 1 is constrained corresponds to the unique stable saddle path in
(V,σ)-space that converges to the first-best allocation (V,σ) = (u(2),1). The complete solution can be numerically
approximated by starting with σ = 0, and finding the value of V1 =

¯
V1 on the saddle path. The Pareto-frontier is found

by calculating the expected discounted utility of agent 2 along the computed saddle path. In the numerical calculations
this is done by using ten iterations and then assuming the first-best allocation is attained. The approximation gives

¯
V1 ≈ 0.353328 and V̄1 = V2(

¯
V1)≈ 1.53803.

Since the example is symmetric, the solution when V1 is large enough such that agent 2 is constrained is computed
symmetrically. The solution for the Pareto-frontier, surplus and actions of both agents is illustrated in Figure S.2. The
point “S” indicates the first-best allocation.

V1

V2(V1)

V 1 V̄1u1(2)

u2(2) S

(a). PARETO-FRONTIER.

2

V1

z(V1)

V 1 V̄1

S

u1(2)

(b). SURPLUS.

V 1 V̄1u1(2)

1

V1

a1(V1)

S

(c). ACTION OF AGENT 1.

V 1 V̄1u1(2)

1

V1

a2(V1)

S

(d). ACTION OF AGENT 2.

FIGURE S.2: EXAMPLE WHERE ui(x) = 2(1− exp(−1
2x)), f (a) = 2(

√
a1 +
√

a2) AND DEVIATION

PAYOFF Di(a j) = 2(1− exp(−√a j)). POINT “S” IS THE STATIONARY POINT.

Proofs of lemmas and propositions for Section 4

For all proofs in this subsection, we maintain Assumptions 1-3 and A.4. Additionally it is assumed that agents are risk
averse, that is, ui is strictly concave for i = 1,2.

LEMMA 7: For each s ∈S , a solution to [P1] has the property that zs(a1,a2) is maximized over a ∈ R2
+ subject to

V1 ≥ Ds
1(a2) and V s

2 (V1)≥ Ds
2(a1).



DYNAMIC RELATIONAL CONTRACTS S.11

Proof. We work in terms of the variables d rather than directly in terms of the actions a and show that zs(d1,d2) is
maximized subject to V1 ≥ d2 and V s

2 (V1)≥ d1. Suppose otherwise, and replace (d1(V1),d2(V1)) by some (d1,d2) ∈D(s)
satisfying these constraints with zs(d1,d2) > zs(d1(V1),d2(V1)). In doing so, hold c1− gs

2(d1) and (V r
1 )r∈S constant.

With these changes, all constraints are satisfied, but the maximand is increased, leading to a contradiction.

LEMMA 8: For each s ∈S , the surplus function zs(V1) is continuous, concave and differentiable in V1.

Proof. Taking each property in turn.
Continuity: Continuity follows straightforwardly from the Theorem of the Maximum.
Concavity: Take any V1 and V ′1 in [

¯
V s

1 ,V̄
s
1 ] and the convex combination V λ

1 = λV1 + (1− λ )V ′1, 0 ≤ λ ≤ 1. Let
dλ

i := λdi(V1) + (1−λ )di(V ′1). Since Vi ≥ d j(V1) and V ′i ≥ d j(V ′1), it follows that V λ
1 ≥ dλ

2 . Similarly, V s
2 (V λ

1 ) ≥ dλ
1 ,

from the concavity of V s
2 (V1). Consequently, (dλ

1 ,d
λ
2 ) is feasible at V λ

1 , and therefore, by Lemma 7 and the concavity
of zs(d1,d2), zs(d1(V λ

1 ),d2(V λ
1 ))≥ zs(dλ

1 ,d
λ
2 )≥ λ zs(d1(V1),d2(V1))+(1−λ )zs(d1(V ′1),d2(V ′1)). Thus, the concavity of

zs(V1) is established.
Differentiability: To establish differentiability fix V̂1 ∈ (

¯
V s

1 ,V̄
s
1 ) with optimal choices d1(V̂1) and d2(V̂1), and con-

sider a V1 in a neighborhood of V̂1 (⊂ [
¯
V s

1 ,V̄
s
1 ]). Consider (d̃1(V1), d̃2(V1)) satisfying d̃2(V1)− d2(V̂1) = V1− V̂1 and

d̃1(V1)−d1(V̂1) = V s
2 (V1)−V s

2 (V̂1). By construction, (d̃1(V1), d̃2(V1)) is feasible, and by the differentiability of V s
2 (V1)

and zs(d1,d2), this traces out a differentiable function for V1, zs(d̃1(V1), d̃2(V1)) in the neighborhood of V̂1, with
zs(d̃1(V̂1), d̃2(V̂1)) = zs(V̂1). From Part A, zs(d̃1(V1), d̃2(V1)) ≤ zs(V1). Therefore, applying Lemma 1 of Benveniste
and Scheinkman (1979) establishes differentiability.

LEMMA 9: For each s ∈S (i) dzs(V1)/dV1 > 0 (< 0) implies µs
1(V1) > 0 (µs

2(V1) > 0); (ii) there are two critical
values χ̄s

1 ∈ (
¯
V s

1 ,V̄
s
1 ] and

¯
χs

1 ∈ [
¯
V s

1 ,V̄
s
1 ), such that ds

2(V1) = V1 for all V1 ≤ χ̄s
1 and ds

1(V1) = V s
2 (V1) for all V1 ≥

¯
χs

1.
Moreover, µs

1(V1) = 0 for V̄ s
1 >V1 ≥ χ̄s

1 and µs
2(V1) = 0 for

¯
V s

1 <V1 ≤
¯
χs

1 (if such V1 exist). If the efficient actions can be
sustained in state s, then χ̄s

1 ≤
¯
χs

1. Otherwise, χ̄s
1 >

¯
χs

1, and surplus is maximized for a unique value of V1 ∈ (
¯
χs

1, χ̄
s
1) at

which both constraints bind.

Proof. Since nothing depends on it, we drop the state superscript in what follows. Result (i) follows immediately from (5)
(which follows from the first-order conditions) and the first-order condition (4a) (setting νr

i = 0 for i = 1,2).
To prove result (ii), let the surplus function be at a maximum between

¯
V ∗1 and V̄ ∗1 (with a unique maximum if

¯
V ∗1 = V̄ ∗1 ).

There are two possibilities: case (a),
¯
V ∗1 < V̄ ∗1 , and case (b),

¯
V ∗1 = V̄ ∗1 =: χ̂1. In case (a), it follows from (i) that

µ1(V1) > 0 for V1 < ¯
V ∗1 , and hence, d1(V1) = V2(V1) for V1 ≤ ¯

V ∗1 , where the weak inequality follows by continuity of
d1(V1) and V2(V1). Likewise, µ2(V1)> 0 for V1 > V̄ ∗1 , and d2(V1) = V1 for V1 ≥ V̄ ∗1 . Since z(d) is strictly concave, and
z(V1) is constant on [

¯
V ∗1 ,V̄

∗
1 ], it follows (see proof of Lemma 14) that actions are first-best and µ1(V1) = µ2(V1) = 0

on this interval. Next, consider some V̂1 < ¯
V ∗1 . We want to show that µ2(V̂1) = 0. Suppose to the contrary that

µ2(V̂1) > 0. Then, setting γi = 0, i = 1,2 in the first-order condition (4c) shows that ∂ z(d1(V̂1),d2(V̂1))/∂d1 > 0 and
d1(V̂1) = V2(V̂1)>V2(

¯
V ∗1 )≥ d1(

¯
V ∗1 ), where the strict inequality follows because V2(·) decreasing. Since µ2(

¯
V ∗1 ) = 0 (by

efficiency), it follows that ∂ z(d1(
¯
V ∗1 ),d2(

¯
V ∗1 ))/∂d1 = 0. Since d1(V̂1)> d1(

¯
V ∗1 ), and because by assumption ∂ 2z/∂d2

1 < 0
and ∂ 2z/∂d1∂d2 ≥ 0, it follows that d2(V̂1)> d2(

¯
V ∗1 ). But µ1(V1)> 0 for V1 < ¯

V ∗1 by the first part of the proof, so that
d2(V̂1) = V̂1 < ¯

V ∗1 = d2(
¯
V ∗1 ) (where the last equality follows by continuity), yielding a contradiction. A similar argument

shows that µ1(V1) = 0 for V1 ≥ V̄ ∗1 .
For case (b), define Ṽ µ2

1 ∈ [
¯
V1, χ̂1] to be the largest (supremum) value of V1 with µ2(V1) = 0 (recall µ2(V1)> 0 for V1 > χ̂1

by part (i)). First, suppose such a value exists. Noting that µ1(V1)> 0 for V1 < χ̂1, for V̂1 <V µ2
1 , replace

¯
V ∗1 by V µ2

1 in the
argument given in case (a), to show that µ2(V̂1) = 0 for V̂1 <V µ2

1 . A symmetric argument can be used to show µ1(V̂ ) = 0
for all V̂ >V µ1

1 , if there exists a V µ1
1 ∈ [χ̂1,V̄1] such that µ1(V µ1

1 ) = 0. then µ1(V̂ ) = 0 for all V̂ >V µ1
1 . Therefore, set

¯
χ1 = Ṽ µ2

1 and χ̄1 = Ṽ µ1
1 . Note also, that if χ̄s

1 =
¯
χs

1 (= χ̂1), then µ1(χ̂1) = µ2(χ̂1) = 0, by continuity of the multipliers
in V1 (setting γi = 0, i = 1,2 in equation (4c) and modifying the argument in Lemma 14), then actions are first-best at
χ̂1. Finally, if there is no Ṽ µ2

1 ∈ [
¯
V1, χ̂1] to be the largest (supremum) value of V1 with µ2(V1) = 0, then set

¯
χ1 =

¯
V1. In

this case, µ2(
¯
V1)> 0 and both actions are under-efficient at

¯
V1. Likewise, if there is no Ṽ µ1

1 such that µ1(Ṽ µ1
1 ) = 0, then

χ̄1 = V̄1, µ1(V̄1)> 0 and both actions are under-efficient at V1 = V̄1.
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PROPOSITION 4: With risk-averse agents and under Assumption A.4 (i) there is no overinvestment, ∂ zs(a(st))/∂ai ≥ 0,
i = 1,2, all st ; (ii) surplus zs(V1) is a concave differentiable function (strictly concave if s ∈S c

∗ ) with maximum at unique
CSM actions; (iii) at V1 such that zs(V1) is maximized, either efficient actions a∗(s) are sustainable (by definition, if
s ∈S∗) or both constraints bind (if s ∈S c

∗ ) and as(V1)< a∗(s); (iv) for each V1 ∈ [
¯
V s

1 ,V̄
s
1 ], σ+

s (V1), the (absolute value
of the) common slope of the Pareto-frontiers next period, and σs(V1), the slope of the current Pareto-frontier, satisfy

σ
+
s (V1)−σs(V1) = u′2

dzs(V1)

dV1
.

Proof. (i) By Proposition 2(ii), the Pareto-frontier is strictly concave. This implies not only is as
i (·) a continuous function

of V1 but it also can be established (by adapting the proof of Lemma 5, using the strict concavity of the Pareto-frontiers and
the strict concavity of the utility functions) that xs

i (·) and V s,r
1 (·) are continuous functions of V1. Our previous discussion

of [P1] has shown that the endpoint constraints (3d) and (3e) do not bind. Equally, by part (b) of Assumption A.4, xi > 0
in an optimal contract and hence, since actions are non-negative, the consumption constraints (3f) do not bind. Since
constraints (3f) do not bind, setting γi = 0, i = 1,2, in equation (4c) shows that ∂ zs/∂ai ≥ 0, i = 1,2. This implies,
as

i (V1) ≤ as
i (a j(V1),s), i, j = 1,2, i 6= j. (ii) follows from Lemma 5, and the fact that for s ∈S c

∗ , argmaxV1 zs(V1) is
unique and so the CSM action is unique, while for s ∈S∗ it is a∗(s) by definition. (iii) follows from Lemma 9: if
s ∈S c

∗ then χ̄s
1 >

¯
χs

1, so both constraints bind. By Lemma 7 zs(a1,a2) is maximized over a ∈R2
+ subject to V1 ≥Ds

1(a2)

and V s
2 (V1)≥ Ds

2(a1), and so ai ≤ a∗i (a j), i = 1,2 (otherwise surplus could be increased by cutting ai). Hence by a∗i ()

non-decreasing and a 6= a∗ the result follows. (iv) Setting νr
i = 0 for i = 1,2 in equation (4a), and also setting γi = 0 for

i = 1,2 in equation (4b), and substituting gives:

σ
+
s (V1)−σs(V1) = u′2

(
−σs(V1)

∂ zs(ds
1(V1),ds

2(V1))

∂d1
+

∂ zs(ds
1(V1),ds

2(V1))

∂d2

)
.(S.11)

The bracketed term on the right-hand-side of equation (S.11) is equal to dzs(V1)/dV1. To see this recall that ∂ zs/∂di ≥ 0
and first note that if ∂ zs/∂d1 > 0, then µ2 > 0 and (3c) holds as an equality. Therefore, ds

1(V1) = V s
2 (V1) and consequently

dds
1/dV1 = V s′

2 (V1) = −σs(V1) < 0. Hence, −σs(V1)(∂ zs/∂d1) equals (∂ zs/∂d1)(dds
1/dV1), with the same equality

trivially holding if ∂ zs/∂d1 = 0. Likewise, if ∂ zs/∂d2 > 0, then (3b) holds an equality and dds
2/dV1 = 1, and hence,

(∂ zs/∂d2) = (dds
2/dV1)(∂ zs/∂d2) (again, also holding trivially if ∂ zs/∂d2 = 0). From Lemma 8, the surplus function is

differentiable and therefore, using the total derivative of zs(ds
1(V1),ds

2(V1)) with respect to V1, it follows that bracketed
term in equation (S.11) is equal to dzs(V1)/dV1. Hence, equation (S.11) can be written as

σ
+
s (V1)−σs(V1) = u′2

dzs(V1)

dV1
,

which is equation (5) in the text.

Proof of proposition 5 in Section 4

PROPOSITION 5: For each state s ∈S , (i) for all ρ ∈ R+, h(ρ,s)→ hRS(ρ,s) as θi j→ 0, i, j = 1,2, i 6= j, all s. (ii)
For δ >

¯
δ and any η satisfying (1/2)(ρ̄RS

s −
¯
ρRS

s )> η > 0, all s, there exists ε > 0 such that for θ s
i j < ε , i, j = 1,2, i 6= j,

all s, h(ρ,s) = ρ for all ρ ∈ [
¯
ρRS

s + η , ρ̄RS
s −η ].

Proof. To nest the hold-up and risk-sharing models consider the following problem:

[P2] max
(a(st )≥0,x(st )≥

¯
x)∞

t=0

E
[
∑

∞

t=0 δ
tu2(x2(st)) | s0

]
subject to
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E
[
∑

∞

t=0 δ
tu1(x1(st)) | s0

]
≥V1(s0)(S.12a)

ui(xi(st))+E
[
∑

∞

τ=t+1 δ
τ−tui(xi(sτ)) | st

]
≥ Fs

i (a j(st),θ ,ξ ) i = 1,2 and ∀st(S.12b)

x1(st)+ x2(st)≤ ẑs(a(st)) ∀st .(S.12c)

For Fs
i (a j,θ ,ξ ) = Ds

i (a j;θ) (where the dependence of the deviation utility on the default parameters has been made
explicit) and ẑs(a) = zs(a) := f s

1(a1)+ f s
2(a2)−a1−a2, the solution to this problem is the solution to our hold-up problem

(henceforth, the HU problem). Define Y s
i := f s

i (a∗i (s))−a∗i (s), ẑs(a) = Y s
1 +Y s

2 and for ξ ≥ 0,

Fs
i (a j,θ ,ξ ) = ui(Y s

i )+E
[
∑

∞

τ=1 δ
τ ui(Y

sτ

i ) | s0 = s
]

+ ξ .

We call this the ξ -RS problem (it is independent of a). When ξ = 0, this is the standard risk-sharing problem. Define
θ ≡ (θ s

i j)i, j=1,2,s∈S with θ s
ii = 1 and for i 6= j, θ s

i j = 0, i = 1,2, all s ∈S , and denote this by θ 0. There exists ξ̂ (θ)> 0,

ξ̂ (θ)→ 0 as θ → θ 0, such that for all θ (θ s
i j ≥ 0, i, j = 1,2, and ∑

2
i=1 θ s

i j ≤ 1, j = 1,2), all 0≤ a2 ≤ a∗2(s), all s ∈S ,

Ds
1 (a2;θ) := max

a1
u1 (θ

s
12 f2 (a2)+ θ

s
11 f s

1 (a1)−a1)+

E

[
∑

τ≥t+1
δ

τ−tu1

(
θ

sτ

12 f sτ

2

(
aNE

2 (sτ)
)

+ max
a1

(
θ

sτ

11 f sτ

1 (a1)−a1
))
| st = s

]

≤ E

[
∑
τ≥t

δ
τ−tu1

(
Y sτ

1 + θ
sτ

12 f sτ

2 (a∗2)
)
| s

]

≤ E

[
∑
τ≥t

δ
τ−tu1

(
Y sτ

1

)
| s

]
+ ξ̂ (θ) ,

(S.13)

where the first inequality follows from aNE
2 (s)≤ a∗2(s) and the fact that if agent 1 deviates, then he gets at most θ s

12 f s
2(a∗2(s))

more consumption today than his autarkic income Y s
1 , given that maxa1(θ s

11 f s
1(a1)−a1)≤Y s

1 and θ s
12 f s

2(a2)≤ θ s
12 f s

2(a∗2);
likewise in the future given that θ

sτ

12 f sτ

2 (aNE
2 )≤ θ

sτ

12 f sτ

2 (a∗2). (That is, for any θ near enough to θ 0, we can find a ξ also
small such that adding it to autarkic utility in the risk-sharing problem gives a deviation utility bigger than the deviation
utility in the hold-up problem.) Likewise for agent 2. Define [

¯
V RS

1 ,V̄ RS
1 ] to be the projection of the Pareto frontier onto

agent 1’s utilities in the RS case in some state s (dropping the dependence on s for notational simplicity, and where
possible in what follows). By Ligon et al. (2002), u′2(xRS

2 (
¯
V RS

1 ))/u′1(xRS
1 (

¯
V RS

1 )) =
¯
ρRS, u′2(xRS

2 (V̄ RS
1 ))/u′1(xRS

1 (V̄ RS
1 )) = ρ̄RS.

By the assumption that δ >
¯
δ ,

¯
V RS

1 < V̄ RS
1 , and there exists a continuous function

¯
ξ (V1):(

¯
V RS

1 ,V̄ RS
1 )→ R++, such that for

ξ ≤
¯
ξ (V1), the solution to the ξ -RS problem exists at V1 ∈ (

¯
V RS

1 ,V̄ RS
1 ) (adapting the arguments in Thomas and Worrall

1988).
A. Fix V1 ∈ (

¯
V RS

1 ,V̄ RS
1 ). Then, for θ close enough to θ 0 such that ξ̂ (θ)≤

¯
ξ (V1), {(x(st) = w(st),a(st))}t≥0 is feasible in

the HU problem, where {w(t)}t≥0 solves the ξ̂ (θ)-RS problem at V1 and a(t) = a∗(st), which implies (see (S.12b)) at all
st

u1(w1(st))+E
[
∑τ≥t+1 δ

τ−tu1(w1(sτ)) | st
]
≥ E

[
∑τ≥t δ

τ−tu1(Y sτ

1 ) | st

]
+ ξ̂ (θ)

≥ Dst
1 (a2(st);θ) ,

where the second inequality follows from (S.13); and also (S.12c) holds trivially. Likewise for agent 2. Thus, the
constraints in the HU problem are satisfied. Denote by C(θ) a solution to the HU problem at V1 (when it exists) and by
Ṽ2(C(θ)) the corresponding payoff to agent 2, and likewise by R(ξ ) and Ṽ2(R(ξ )) the corresponding contract and values
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in the ξ -RS problem, with R(0) the optimal risk-sharing contract at V1. We have just shown that for θ close enough to θ 0:

Ṽ2 (C (θ))≥ Ṽ2

(
R
(

ξ̂ (θ)
))

.(S.14)

Let θ → θ 0. We assert that limC(θ) = limR(ξ̂ (θ)) (= R(0)). Suppose otherwise, then we can find a subsequence (recall
from Lemma 4 that the space of contracts is compact in the usual product topology, and payoffs are continuous in this
topology) for which limC(θ) exists and limC(θ) 6= R(0). For this subsequence, then, Ṽ2(limC(θ)) = limṼ2(C(θ))≥
limṼ2(R(ξ̂ (θ))) = Ṽ2(limR(0)) (from (S.14)), but since limC(θ) satisfies the RS constraints (ẑs(at) is maximal in the RS
problem, so (S.12c) must hold) and offers agent 2 a payoff at least that in the RS problem, this contradicts the uniqueness
of the RS solution. Moreover, for all θ such that ξ̂ (θ)<

¯
ξ (V1), neither self-enforcing constraint binds and a(0) = a∗. To

see this, recall that for ξ ≤
¯
ξ (V1), the solution to the ξ -RS problem exists at V1, so that V1 ≥ E[∑t≥0 δ tu1(Y st

1 ) | s0 = s]+

¯
ξ (V1)> E[∑t≥0 δ tu1(Y st

1 ) | s0 = s]+ ξ̂ (θ)≥ Ds0
1 (a2;θ) (the latter follows from (S.13)). Hence, agent 1’s self-enforcing

constraint does not bind, and this also holds for agent 2 because Ṽ2(C(θ)) ≥ Ṽ2(R(ξ̂ (θ))) > E[∑t≥0 δ tu2(Y st
2 ) | s0] +

ξ̂ (θ) ≥ Ds0
2 (a1;θ). Since neither self-enforcing constraint binds, a(0) = a∗. Consequently, with µ1 = µ2 = 0, from

(N.4a) σr = σs for all such θ , while, (from limC(θ) = R(0),σr = σs and (N.4b), σs(V1)→ u′2(xRS
2 (V1))/u′1(xRS

1 (V1))

because θ → θ 0, where xRS
i is agent i’s allocation at V1 in the optimal risk-sharing contract. So far V1 has been held fixed,

but we extend the above arguments for a range of values for V1. For ε > 0 small enough that
¯
V RS

1 + ε < V̄ RS
1 − ε , consider

[
¯
V RS

1 +ε,V̄ RS
1 −ε]. Since

¯
ξ (V1)> 0 and continuous on [

¯
V RS

1 +ε,V̄ RS
1 −ε], we can define

¯̄
ξ (ε) := minV1∈[

¯
V1+ε,V̄1−ε]

¯
ξ (V1),

where
¯̄
ξ (ε)> 0. Thus, for θ such that ξ̂ (θ)<

¯̄
ξ (ε), current actions are efficient (see above) for all V1 ∈ [

¯
V RS

1 +ε,V̄ RS
1 −ε],

so that σ r = σ s on this interval. Moreover, at
¯
V RS

1 + ε , σs(¯
V1 + ε)→ u′2(xRS

2 (
¯
V RS

1 + ε))/u′1(xRS
1 (

¯
V RS

1 + ε)), and at
V̄ RS

1 −ε , σs(V̄ RS
1 −ε)→ u′2(xRS

2 (V̄ RS
1 −ε))/u′1(xRS

1 (V̄ RS
1 −ε)). Also, for V1 ∈ [

¯
V RS

1 +ε,V̄ RS
1 −ε], σs(¯

V RS
1 +ε)≤ σs(V1)≤

σs(V̄ RS
1 −ε) by the concavity of the value function. It follows that for any η > 0 and for all θ close enough to θ 0, σr = σs

for any σs ∈ [u′2(xRS
2 (

¯
V RS

1 + ε))/u′1(xRS
1 (

¯
V RS

1 + ε)) + η ,u′2(xRS
2 (V̄ RS

1 − ε))/u′1(xRS
1 (V̄ RS

1 − ε))−η ]. Since ε and η can be
made arbitrarily small, and u′2(xRS

2 (
¯
V RS

1 ))/u′1(xRS
1 (

¯
V RS

1 )) =
¯
ρRS

s , u′2(xRS
2 (V̄ RS

1 ))/u′1(xRS
1 (V̄ RS

1 )) = ρ̄RS
s , the claim in part (ii)

of the proposition follows.
B. Maintain the assumption that δ >

¯
δ . Define

¯
V1(θ) to be the minimum efficient value for V1 in state s in the HU

problem (i.e., where V ′2(
¯
V1(θ)) = 0). Recall that agent 1’s self-enforcing constraint binds at this point, D1(a2;θ) =

¯
V1(θ)

(see Lemma 9). Since θ → θ 0,
¯
V1(θ) = D1(a2;θ)→ E[∑τ≥t δ τ−tu1(Y sτ

1 ) | s0] =
¯
V1, and consider the sequence of

optimal contracts at
¯
V1(θ), denoted by

¯
C(θ), as θ → θ 0. From the foregoing, lim

¯
C(θ) (as before, taking a convergent

subsequence if necessary) yields agent 1 a payoff of
¯
V1. Let

¯
R denote the optimal risk-sharing contract at

¯
V1. We assert

that lim
¯
C(θ) =

¯
R. If Ṽ2(lim

¯
C(θ))> Ṽ2(

¯
R), then since lim

¯
C(θ) satisfies the risk-sharing constraints at

¯
V1 ((S.12c) holds

because zs(at ′) is maximal in the RS case), this contradicts the optimality of
¯
R. If Ṽ2(lim

¯
C(θ)) < Ṽ2(

¯
R): this implies

that we can fix V1 > ¯
V1 close enough to

¯
V1 such that the RS payoff, say, V RS

2 (V1) > Ṽ2(lim
¯
C(θ)) + η , for some η > 0,

and from part A, V2(V1;θ) (where we make the dependence of V2 on θ in the HU problem explicit) is defined for θ

close enough to θ 0 and converges to V RS
2 (V1) as θ → θ 0. Thus, for θ close enough to θ 0, |V2(V1;θ)−V RS

2 (V1)|< η/2.
Since for θ close enough to θ 0 that V1 > ¯

V1(θ), Ṽ2(
¯
C(θ)) = V2(

¯
V1(θ);θ)≥V2(V1;θ) by V2(·;θ) decreasing, then for

all θ close enough to θ 0 we have Ṽ2(
¯
C(θ)) ≥ V2(V1;θ) > Ṽ2(lim

¯
C(θ)) + η/2 = limṼ2(

¯
C(θ)) + η/2, a contradiction.

Thus, Ṽ2(lim
¯
C(θ)) = Ṽ2(

¯
R), and so lim

¯
C(θ) =

¯
R, otherwise, there would be two optimal RS contracts at

¯
V1, which

is impossible. Next, at
¯
V1(θ), σs = 0, and lim

¯
C(θ) =

¯
R implies that σr → u′2(xRS

2 (
¯
V1))/u′1(xRS

1 (
¯
V1)). A symmetric

argument applies at V̄1(θ) defined as the maximum value for V1 in state s. Given the updating equation is continuous and
non-decreasing, and from part A, the claim of part (i) of the proposition then follows (for δ >

¯
δ ).

C. Finally, assume δ ≤
¯
δ : So

¯
V RS

1 = V̄ RS
1 =: V AUT

1 say, and there is a unique feasible contract in the RS case, autarky,
which we denote RAUT . As in part B, consider the sequence of optimal contracts at

¯
V1(θ), denoted by

¯
C(θ), as θ → θ 0.

¯
V1(θ) = D1(a2;θ)→E[∑τ≥t δ τ−tu1(Y sτ

1 ) | s0] =V AUT
1 , and likewise Ṽ2(

¯
C(θ))≥D2(a1;θ)→E[∑τ≥t δ τ−tu2(Y sτ

2 ) | s0] =

Ṽ2(RAUT ). Hence, lim
¯
C(θ) (as before, taking a convergent subsequence if necessary) yields agent 1 a payoff of V AUT

1
and agent 2 a payoff of at least Ṽ2(RAUT ). If Ṽ2(lim

¯
C(θ)) > Ṽ2(RAUT ), then since lim

¯
C(θ) satisfies the risk-sharing

constraints at V AUT
1 ((S.12c) holds because zs(a(τ)) is maximal in the RS case), this contradicts the optimality of
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RAUT . Hence, Ṽ2(lim
¯
C(θ)) = Ṽ2(RAUT ) and so lim

¯
C(θ) = RAUT by the uniqueness of the optimal RS contract. Since a

symmetric argument applies at V̄1(θ), both at σs = 0 and σs = ∞, σr→ u′2(xRS
2 (V AUT

1 ))/u′1(xRS
1 (V AUT

1 )) =
¯
ρRS

s = ρ̄RS
s , so

part (i) of the proposition follows.

Proofs of lemmas for Section 5

For this subsection we maintain Assumptions 1-3 and A.5 and additionally assume that agents are risk-neutral with
ui(xi) = xi.

LEMMA 10: For each s ∈S , the Pareto-frontier V s
2 (·) is strictly concave on [

¯
V s

1 , ¯
V s∗

1 ) where
¯
V s∗

1 := inf{V1:V s′
2 (V1) =

−1}, and on (V̄ s∗
1 ,V̄ s

1 ] where V̄ s∗
1 := sup{V1:V s′

2 (V1) = −1}. If first-best actions are not sustainable in state s, i.e, for
s ∈S ∗

c , then V s
2 (·) is strictly concave on [

¯
V s

1 ,V̄
s
1 ].

Proof. It follows from Proposition 2 that the Pareto-frontier is strictly concave provided that for any two values V1 and
V̂1, V1 6= V̂1, the corresponding choices satisfy d 6= d̂. If d(V1) 6= d∗, then one or other of the self-enforcing constraints is
binding, Therefore, taking a neighborhood about V1 shows that d cannot be constant on this neighborhood, and hence, that
the frontier is strictly concave (on the neighborhood). If, however, d(V1) = d∗, then the actions are first-best, implying
µi = γi = 0. Thus, from the first-order condition (4b) with u′i = 1, it follows that V ′2(V1) = −1. By concavity, the set
of values of V1 where V ′2(V1) =−1 is an interval (possibly degenerate). Since V s(+)

2 (
¯
V1) = 0 and V s(−)

2 (V̄1) =−∞, this
interval is contained in the interior of [

¯
V1,V̄1].

LEMMA 11: With probability one, there is a random time t̂ < ∞ such that ζ (t) converges monotonically to 0 with
ζ (t) = 0 for all t ≥ t̂−1.

Proof. Recall the three subsets of Λs = [
¯
V s

1 ,V̄
s
1 ]⊂ R++: As = {V1 ∈ Λs:co

1 = 0}, Bs = {V1 ∈ Λs:co
1 > 0 and co

2 > 0} and
Cs = {V1 ∈ Λs:co

2 = 0} where (co
1,c

o
2) represents an optimal value for consumption at V1. For notational convenience,

we drop the state superscripts and define σ(t+1) := σ+(t). Recall that ζ (t) = max{ζ1(t),ζ2(t)} and that from the
first-order conditions ζ1(t) =− ln(σ(t+1)) and ζ2(t) = ln(σ(t +1)). First, if σ(t) = 1, then σ(t+1) = 1. Using (4b),
this is immediate if V1 ∈ B. It also follows that σ(t+1) = 1 for V1 ∈ A or V1 ∈C because, for V1 ∈ A, 1≥ σ+ ≥ σ and
for V1 ∈C, 1≤ σ+ ≤ σ . Next, suppose w.l.o.g. that σ0 < 1. Since σ ≥ 1 for V1 ∈C, it follows that V1 ∈ A or V1 ∈ B. For
V1 ∈ B, σ(1) = 1, and for V1 ∈ A, 1≥ σ+ ≥ σ . Hence, 1≥ σ(t+1)≥ σ(t). Thus, ζ (t) declines for all σ0. It remains to
establish that convergence to σ(t) = 1 occurs. Let t ′ be the random period when c1 > 0 first occurs. We first show that
t ′ < ∞ almost surely. Notice that by virtue of a1 ≥ aNE

1 (s)> 0 for any state s, when c1 = 0, agent 1’s utility is at most
−aNE

1 (s). Let −
¯
a1 := maxs∈S {−aNE

1 (s)}< 0. Since net utilities are bounded in equilibrium, denote by ū1 the maximum
utility to agent 1 in any state. Let τ be such that δ τ ū1/(1−δ )<

¯
a1. Then, starting in any state s at any date t, it must be

the case that c1 > 0 on some positive probability path within the next τ periods because otherwise future utility after t + τ

cannot compensate the current negative utility. Letting
¯
π be the minimum probability of any such τ-period path (that

is, the minimum probability of a positive probability path), we conclude that after history st , there is a probability of at
least

¯
π > 0 that c1 > 0 before t + τ . Consequently, Pr[∃ t such thatc1(t)> 0 ] = 1. From the above argument, we have

σ(t)≤ 1, but if c1(t)> 0 at t, then V1 ∈ B or V1 ∈C. If V1 ∈ B, then σ(t+1) = 1; if V1 ∈C, then σ(t)≥ 1, and hence,
combining inequalities, σ(t) = 1. Hence, Pr[∃ t such thatζ (t) = 0 ] = 1.

LEMMA 12: For each s ∈S , the surplus function zs(V1) is a continuous and single peaked function of V1. That is, for
any V (1)

1 <V (2)
1 <V (3)

1 , it is not possible that zs(V (1)
1 ),zs(V (3)

1 )> zs(V (2)
1 ). Moreover, zs(V1) is maximal when σs(V1) = 1.

Proof. Continuity follows from Lemma 5. Suppose, to the contrary, that zs(V1) is not single peaked and that there
is V (1)

1 < V (2)
1 < V (3)

1 such that zs(V (1)
1 ) > zs(V (2)

1 ) and zs(V (3)
1 ) > zs(V (2)

1 ). By concavity of the Pareto-frontier, there
is some λ ∈ (0,1) such that the convex combination of contracts satisfies V (λ )

1 = λV (1)
1 + (1− λ )V (3)

1 ≤ V (2)
1 and

V (λ )
2 = λV s

2 (V (1)
1 ) + (1−λ )V s

2 (V (3)
1 )≤V s

2 (V (2)
1 ). Let d(k)

i and c(k)
i denote the optimal choices at V (k)

1 for k = 1,2,3. In
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addition, let d(λ )
i = λd(1)

i +(1−λ )d(3)
i . in the proof of Proposition 2 it is shown that under Assumption A.5 surplus is

a concave function of d. Hence, zs(d(λ )
1 ,d(λ )

2 )≥ λ zs(d(1)
1 ,d(1)

2 )+ (1−λ )zs(d(3)
1 ,d(3)

2 ) = λ zs(V (1)
1 )+ (1−λ )zs(V (3)

1 )≥
min(zs(V (1)

1 ),zs(V (3)
1 )) > zs(V (2)

1 ). Now consider the contract at V (2)
1 and replace d(2)

i by d(λ )
i , and replace c(2)

i by c̃i,
such that c̃i−gs

j(d(λ )
i ) > c(2)

i −gs
j(d(2)

i ) and c̃1 + c̃2−gs
2(d(λ )

1 )−gs
1(d(λ )

2 ) = zs(d(λ )
1 ,d(λ )

2 ). The existence of such c̃i is

guaranteed by the strict inequality just established that zs(d(λ )
1 ,d(λ )

2 ) > zs(d(2)
1 ,d(2)

2 ). While making these changes to
current utilities, keep continuation utilities unchanged. The new utilities satisfy Vi >V (2)

i ≥V (λ )
i ≥ d(λ )

j , where the first
inequality follows from the construction of the new contract, the second inequality follows from the concavity of the
frontier and the choice of λ , and the third follows from the definitions of V (λ )

i and d(λ )
J and the constraints V (k)

i ≥ d(k)
j .

This provides a contradiction, and hence, we conclude that z(V1) is single peaked.
Consider σs(V1) = 1. If V1 ∈ As or V1 ∈Cs, then it follows from the first-order conditions that actions and surplus are
first-best. For V1 ∈ Bs, there are two possibilities: either µ1 = µ2 = 0, or µ1,µ2 > 0. In the former case, actions and surplus
are first-best. In the latter case, note that the first-order conditions can be used to show µ1 = (∂ zs/∂d2)/(1− (∂ zs/∂d1))

and µ2 = (∂ zs/∂d1)/(1− (∂ zs/∂d1)). It has already been shown in the proof of Proposition 2 that (1− (∂ zs/∂d1)) 6= 0
except possibly where V1 = V̄ s

1 . Hence, from Lemma 5 and the continuity of the functions zs (and gs
i ), the multipliers are

continuous functions of V1 and µ1,µ2 > 0 in an open neighborhood of V1. Thus, in this neighborhood, d2(V1) = V1 and
d1(V1) = V s

2 (V1). Since V2(·) is a differentiable function, di is a differentiable function of V1 in this neighborhood, with
derivatives dd2/dV1 = 1 and dd1/dV1 =−σs(V1). Hence,

dzs(V1)

dV1
=−σs(V1)

∂ zs(d1,d2)

∂d1
+

∂ zs(d1,d2)

∂d2
.

It can also be checked from the first-order conditions that the derivative dzs(V1)/dV1 is zero when σs(V1) = 1. Moreover,
it can be seen that zs(V1) is concave in this neighborhood, and hence, the surplus is maximal.
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DYNAMIC RELATIONAL CONTRACTS UNDER COMPLETE INFORMATION

MATERIAL NOT FOR PUBLICATION

First-order conditions in the risk-neutral case

As in the text consider three subsets of Λs = [
¯
V s

1 ,V̄
s
1 ], As = {V1 ∈ Λs:co

1 = 0}, Bs = {V1 ∈ Λs:co
1 > 0 and co

2 > 0} and
Cs = {V1 ∈ Λs:co

2 = 0} where (co
1,c

o
2) represents an optimal value for consumption at V1. We can rewrite the first-order

conditions of equations (4a)-(4c) for each of these subsets under the assumption of risk neutrality. Consider the first-order
conditions for V1 ∈ As. With risk-neutrality, and remembering that νr

i = 0 for i = 1,2, these are given by:

σ
+
s (V1) = 1− γ1 =

∂ys(a1,a2)

∂a1
,(N.1a)

σs(V1) = 1− γ1−µ1 =
∂ys(a1,a2)

∂a1
− ∂ zs(a1,a2)

∂a2
gs ′

1 (d2),(N.1b)

σ
+
s (V1)−σs(V1) = µ1 =

∂ zs(a1,a2)

∂a2
gs ′

1 (d2).(N.1c)

Similarly, for V1 ∈ Bs, where γ1 = γ2 = 0, the first-order conditions satisfy:

σ
+
s (V1) = 1,(N.2a)

σs(V1) = 1 + µ2−µ1 =
1− ∂ zs(a1,a2)

∂a2
gs ′

1 (d2)

1− ∂ zs(a1,a2)
∂a1

gs ′
2 (d1)

,(N.2b)

σ
+
s (V1)−σs(V1) = µ1−µ2 =−σ

∂ zs(a1,a2)

∂a1
gs ′

2 (d1)+
∂ zs(a1,a2)

∂a2
gs ′

1 (d2).(N.2c)

Likewise, for V1 ∈Cs:

σ
+
s (V1) = 1 +

γ2

1 + µ2
=

1
∂ys(a1,a2)

∂a2

,(N.3a)

σs(V1) = 1 + γ2 + µ2 =
1

∂ys(a1,a2)
∂a2

− ∂ zs(a1,a2)
∂a1

gs ′
2 (d1)

,(N.3b)

σ+
s (V1)−σs(V1)

σ
+
s (V1)

=−µ2 =−σs(V1)
∂ zs(a1,a2)

∂a1
gs ′

2 (d1).(N.3c)

First-order conditions in the risk-averse case

Setting νr
i = γi = 0 for i = 1,2 in equations (4a)-(4c) gives:

σ
+
s (V1)−σs(V1) =−σs(V1)

µ2

1 + µ2
+

µ1

1 + µ2
,(N.4a)

σ
+
s (V1) =

u′2
u′1
,(N.4b)

u′2
∂ zs

∂di
=

µ j

1 + µ2
i = 1,2 and i 6= j.(N.4c)
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Example in risk-neutral case

We consider a simple example with no uncertainty to illustrate the results in the risk-neutral case that demonstrates
that the backloading phase of Theorem 2 with overinvestment can exist. The example is similar to the example in the
risk-averse case presented in the Introduction of the main text except that agents are risk neutral, there is an asymmetry in
production and the non-negativity constraints on consumption are imposed. We assume the production function is

y(a1,a2) = f1(a1)+ f2(a2) = 2b
√

a1 + 2
√

a2

for a parameter b ∈ (0,1). In the example in the text b = 1. We suppose the breakdown payoffs are the same as in the
example in the text: φi(a1,a2) = θi1 f1(a1)+ θi2 f2(a2) where the parameters are θ11 = θ22 = 0 and θ12 = θ21 = 1. The
conditionally efficient actions are independent of the other agent’s action and given by a∗1 = b2 and a∗2 = 1 and maximal
efficient surplus is 1 + b2. Given the additive technology the Nash best-response functions are dominant strategies,
aN

1 = aN
2 = 0 so the best response is no investment. Hence. the deviation payoffs are (all per-period payoffs have been

multiplied by (1−δ )):
D1(a2) = (1−δ )2

√
a2 and D2(a1) = (1−δ )2b

√
a1.

For illustration we consider the special case of δ = 1/3 and b =
√

3/3 (the value δ = 1/3 is chosen such that the efficient
outcome is not sustainable in the stationary solution but large enough to generate simple but interesting dynamics for
the optimum contract). The solution can be found by first deriving the efficient stationary solution and then working
backwards from the stationary solution to construct the entire Pareto-frontier. It should be stressed that this procedure
computes the exact solution and does not rely on numerical methods.

The solution is illustrated in Figure N.1 which plots some of the variables of interest against the (continuation) utility
V1, of agent 1. The stationary solution is indicated by point “S”. Figure N.1(a) illustrates the Pareto-frontier. The
left hand endpoint of the frontier is determined at the point where this function has a zero slope and the right hand
endpoint where the slope is infinite and a1 = 0. The stationary solution is where joint utility, V1 +V2, is maximized so
that the slope of the frontier is −1 at point S. Figure N.1(b) illustrates the surplus for different values of V1 indicating
that surplus is maximized at the stationary solution. Figure N.1(d) illustrates that agent 2 is always underinvesting
(a2 < a∗2 = 1) for all V1. Agent 1 is always constrained but because V1 is increased, a2 can also be increased without
agent 1 reneging. Figure N.1(c) shows that agent 1’s investment is efficient (a∗1 = 1/3) for V1 ∈ [2/27,4

√
21/27] and that

agent 1 overinvests (and has zero consumption) for low values of V1 < 2/27 and underinvests for larger values of V1 and
at the stationary solution. If we suppose that the initial distribution of utilities is such that V1 < 2/27 then the optimum
contract evolves in the following way. In the initial period agent 1 has zero consumption and overinvests. In the next
period it can be shown that the continuation value for V1 will be in the range (2/27,4

√
21/27). Thus, next period the

action a1 is chosen efficiently, a1 = 1/3. In the periods thereafter the continuation values are the utility maximizing ones
at the stationary point where both agents underinvest. Thus, in this example and for the parameters we’ve used, and for an
initial distribution where V1 < 2/27, there is at most one period of Phase 1 where there is overinvestment and after two
periods the stationary solution is reached where both agents are underinvesting (for different parameter values there may
be more than one period of Phase 1 in which there is overinvestment, but here the purpose is just to illustrate that there
may be overinvestment).
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FIGURE N.1: EXAMPLE WITH δ = 1
3 AND b =

√
3

3 .
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